ExplaiNER / src /subpages /find_duplicates.py
Alexander Seifert
make get_widget_defaults private
f259527
raw
history blame
2.04 kB
"""Find potential duplicates in the data using cosine similarity."""
import streamlit as st
from sentence_transformers.util import cos_sim
from src.subpages.page import Context, Page
@st.cache()
def get_sims(texts: list[str], sentence_encoder):
embeddings = sentence_encoder.encode(texts, batch_size=8, convert_to_numpy=True)
return cos_sim(embeddings, embeddings)
class FindDuplicatesPage(Page):
name = "Find Duplicates"
icon = "fingerprint"
def _get_widget_defaults(self):
return {
"cutoff": 0.95,
}
def render(self, context: Context):
st.title("Find Duplicates")
with st.expander("💡", expanded=True):
st.write("Find potential duplicates in the data using cosine similarity.")
cutoff = st.slider("Similarity threshold", min_value=0.0, max_value=1.0, key="cutoff")
# split.add_faiss_index(column="embeddings", index_name="sent_index")
# st.write("Index is ready")
# sentence_encoder.encode(["hello world"], batch_size=8)
# st.write(split["tokens"][0])
texts = [" ".join(ts) for ts in context.split["tokens"]]
sims = get_sims(texts, context.sentence_encoder)
candidates = []
for i in range(len(sims)):
for j in range(i + 1, len(sims)):
if sims[i][j] >= cutoff:
candidates.append((sims[i][j], i, j))
candidates.sort(reverse=False)
for (sim, i, j) in candidates[:100]:
st.markdown(f"**Possible duplicate ({i}, {j}, sim: {sim:.3f}):**")
st.markdown("* " + " ".join(context.split["tokens"][i]))
st.markdown("* " + " ".join(context.split["tokens"][j]))
# st.write("queries")
# results = split.get_nearest_examples("sent_index", np.array(split["embeddings"][0], dtype=np.float32), k=2)
# results = split.get_nearest_examples_batch("sent_index", queries, k=2)
# st.write(results.total_examples[0]["id"][1])
# st.write(results.total_examples[0])