ExplaiNER / src /load.py
Alexander Seifert
add randomize_sample option
bb162b6
raw
history blame
3.33 kB
from typing import Optional
import pandas as pd
import streamlit as st
from datasets import Dataset # type: ignore
from src.data import encode_dataset, get_collator, get_data, predict
from src.model import get_encoder, get_model, get_tokenizer
from src.subpages import Context
from src.utils import align_sample, device, explode_df
_TOKENIZER_NAME = (
"xlm-roberta-base",
"gagan3012/bert-tiny-finetuned-ner",
"distilbert-base-german-cased",
)[0]
def _load_models_and_tokenizer(
encoder_model_name: str,
model_name: str,
tokenizer_name: Optional[str],
device: str = "cpu",
):
sentence_encoder = get_encoder(encoder_model_name, device=device)
tokenizer = get_tokenizer(tokenizer_name if tokenizer_name else model_name)
labels = "O B-COMMA".split() if "comma" in model_name else None
model = get_model(model_name, labels=labels)
return sentence_encoder, model, tokenizer
@st.cache(allow_output_mutation=True)
def load_context(
encoder_model_name: str,
model_name: str,
ds_name: str,
ds_config_name: str,
ds_split_name: str,
split_sample_size: int,
randomize_sample: bool,
**kw_args,
) -> Context:
"""Utility method loading (almost) everything we need for the application.
This exists just because we want to cache the results of this function.
Args:
encoder_model_name (str): Name of the sentence encoder to load.
model_name (str): Name of the NER model to load.
ds_name (str): Dataset name or path.
ds_config_name (str): Dataset config name.
ds_split_name (str): Dataset split name.
split_sample_size (int): Number of examples to load from the split.
Returns:
Context: An object containing everything we need for the application.
"""
sentence_encoder, model, tokenizer = _load_models_and_tokenizer(
encoder_model_name=encoder_model_name,
model_name=model_name,
tokenizer_name=_TOKENIZER_NAME if "comma" in model_name else None,
device=str(device),
)
collator = get_collator(tokenizer)
# load data related stuff
split: Dataset = get_data(
ds_name, ds_config_name, ds_split_name, split_sample_size, randomize_sample
)
tags = split.features["ner_tags"].feature
split_encoded, word_ids, ids = encode_dataset(split, tokenizer)
# transform into dataframe
df = predict(split_encoded, model, tokenizer, collator, tags)
df["word_ids"] = word_ids
df["ids"] = ids
# explode, clean, merge
df_tokens = explode_df(df)
df_tokens_cleaned = df_tokens.query("labels != 'IGN'")
df_merged = pd.DataFrame(df.apply(align_sample, axis=1).tolist())
df_tokens_merged = explode_df(df_merged)
return Context(
**{
"model": model,
"tokenizer": tokenizer,
"sentence_encoder": sentence_encoder,
"df": df,
"df_tokens": df_tokens,
"df_tokens_cleaned": df_tokens_cleaned,
"df_tokens_merged": df_tokens_merged,
"tags": tags,
"labels": tags.names,
"split_sample_size": split_sample_size,
"ds_name": ds_name,
"ds_config_name": ds_config_name,
"ds_split_name": ds_split_name,
"split": split,
}
)