Spaces:
Runtime error
Runtime error
import pandas as pd | |
import streamlit as st | |
from subpages.page import Context, Page | |
from utils import colorize_classes, get_bg_color, get_fg_color, htmlify_labeled_example | |
class LossySamplesPage(Page): | |
name = "Samples by Loss" | |
icon = "sort-numeric-down-alt" | |
def get_widget_defaults(self): | |
return { | |
"skip_correct": True, | |
"samples_by_loss_show_df": True, | |
} | |
def render(self, context: Context): | |
st.title(self.name) | |
with st.expander("💡", expanded=True): | |
st.write("Show every example sorted by loss (descending) for close inspection.") | |
st.write( | |
"The **dataframe** is mostly self-explanatory. The cells are color-coded by label, a lighter color signifies a continuation label. Cells in the loss row are filled red from left to right relative to the top loss." | |
) | |
st.write( | |
"The **numbers to the left**: Top (black background) are sample number (listed here) and sample index (from the dataset). Below on yellow background is the total loss for the given sample." | |
) | |
st.write( | |
"The **annotated sample**: Every predicted entity (every token, really) gets a black border. The text color signifies the predicted label, with the first token of a sequence of token also showing the label's icon. If (and only if) the prediction is wrong, a small little box after the entity (token) contains the correct target class, with a background color corresponding to that class." | |
) | |
st.subheader("💥 Samples ⬇loss") | |
skip_correct = st.checkbox("Skip correct examples", value=True, key="skip_correct") | |
show_df = st.checkbox("Show dataframes", key="samples_by_loss_show_df") | |
st.write( | |
"""<style> | |
thead { | |
display: none; | |
} | |
td { | |
white-space: nowrap; | |
padding: 0 5px !important; | |
} | |
</style>""", | |
unsafe_allow_html=True, | |
) | |
top_indices = ( | |
context.df.sort_values(by="total_loss", ascending=False) | |
.query("total_loss > 0.5") | |
.index | |
) | |
cnt = 0 | |
for idx in top_indices: | |
sample = context.df_tokens_merged.loc[idx] | |
if isinstance(sample, pd.Series): | |
continue | |
if skip_correct and sum(sample.labels != sample.preds) == 0: | |
continue | |
if show_df: | |
def colorize_col(col): | |
if col.name == "labels" or col.name == "preds": | |
bgs = [] | |
fgs = [] | |
ops = [] | |
for v in col.values: | |
bgs.append(get_bg_color(v.split("-")[1]) if "-" in v else "#ffffff") | |
fgs.append(get_fg_color(bgs[-1])) | |
ops.append("1" if v.split("-")[0] == "B" or v == "O" else "0.5") | |
return [ | |
f"background-color: {bg}; color: {fg}; opacity: {op};" | |
for bg, fg, op in zip(bgs, fgs, ops) | |
] | |
return [""] * len(col) | |
df = sample.reset_index().drop(["index", "hidden_states", "ids"], axis=1).round(3) | |
losses_slice = pd.IndexSlice["losses", :] | |
# x = df.T.astype(str) | |
# st.dataframe(x) | |
# st.dataframe(x.loc[losses_slice]) | |
styler = ( | |
df.T.style.apply(colorize_col, axis=1) | |
.bar(subset=losses_slice, axis=1) | |
.format(precision=3) | |
) | |
# styler.data = styler.data.astype(str) | |
st.write(styler.to_html(), unsafe_allow_html=True) | |
st.write("") | |
# st.dataframe(colorize_classes(sample.drop("hidden_states", axis=1)))#.bar(subset='losses')) # type: ignore | |
# st.write( | |
# colorize_errors(sample.round(3).drop("hidden_states", axis=1).astype(str)) | |
# ) | |
col1, _, col2 = st.columns([3.5 / 32, 0.5 / 32, 28 / 32]) | |
cnt += 1 | |
counter = f"<span title='#sample | index' style='display: block; background-color: black; opacity: 1; color: white; padding: 0 5px'>[{cnt} | {idx}]</span>" | |
loss = f"<span title='total loss' style='display: block; background-color: yellow; color: gray; padding: 0 5px;'>𝐿 {sample.losses.sum():.3f}</span>" | |
col1.write(f"{counter}{loss}", unsafe_allow_html=True) | |
col1.write("") | |
col2.write(htmlify_labeled_example(sample), unsafe_allow_html=True) | |
# st.write(f"[{i};{idx}] " + htmlify_corr_sample(sample), unsafe_allow_html=True) | |