ExplaiNER / src /utils.py
Alexander Seifert
improve docs
554bac5
raw
history blame
8.54 kB
from pathlib import Path
import matplotlib as matplotlib
import matplotlib.cm as cm
import pandas as pd
import streamlit as st
import tokenizers
import torch
import torch.nn.functional as F
from st_aggrid import AgGrid, GridOptionsBuilder, GridUpdateMode
PROJ = Path(__file__).parent
tokenizer_hash_funcs = {
tokenizers.Tokenizer: lambda _: None,
tokenizers.AddedToken: lambda _: None,
}
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu" if torch.has_mps else "cpu")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
classmap = {
"O": "O",
"PER": "πŸ™Ž",
"person": "πŸ™Ž",
"LOC": "🌎",
"location": "🌎",
"ORG": "🏀",
"corporation": "🏀",
"product": "πŸ“±",
"creative": "🎷",
"MISC": "🎷",
}
def aggrid_interactive_table(df: pd.DataFrame) -> dict:
"""Creates an st-aggrid interactive table based on a dataframe.
Args:
df (pd.DataFrame]): Source dataframe
Returns:
dict: The selected row
"""
options = GridOptionsBuilder.from_dataframe(
df, enableRowGroup=True, enableValue=True, enablePivot=True
)
options.configure_side_bar()
# options.configure_default_column(cellRenderer=JsCode('''function(params) {return '<a href="#samples-loss">'+params.value+'</a>'}'''))
options.configure_selection("single")
selection = AgGrid(
df,
enable_enterprise_modules=True,
gridOptions=options.build(),
theme="light",
update_mode=GridUpdateMode.NO_UPDATE,
allow_unsafe_jscode=True,
)
return selection
def explode_df(df: pd.DataFrame) -> pd.DataFrame:
"""Takes a dataframe and explodes all the fields."""
df_tokens = df.apply(pd.Series.explode)
if "losses" in df.columns:
df_tokens["losses"] = df_tokens["losses"].astype(float)
return df_tokens # type: ignore
def align_sample(row: pd.Series):
"""Uses word_ids to align all lists in a sample."""
columns = row.axes[0].to_list()
indices = [i for i, id in enumerate(row.word_ids) if id >= 0 and id != row.word_ids[i - 1]]
out = {}
tokens = []
for i, tok in enumerate(row.tokens):
if row.word_ids[i] == -1:
continue
if row.word_ids[i] != row.word_ids[i - 1]:
tokens.append(tok.lstrip("▁").lstrip("##").rstrip("@@"))
else:
tokens[-1] += tok.lstrip("▁").lstrip("##").rstrip("@@")
out["tokens"] = tokens
if "preds" in columns:
out["preds"] = [row.preds[i] for i in indices]
if "labels" in columns:
out["labels"] = [row.labels[i] for i in indices]
if "losses" in columns:
out["losses"] = [row.losses[i] for i in indices]
if "probs" in columns:
out["probs"] = [row.probs[i] for i in indices]
if "hidden_states" in columns:
out["hidden_states"] = [row.hidden_states[i] for i in indices]
if "ids" in columns:
out["ids"] = row.ids
assert len(tokens) == len(out["preds"]), (tokens, row.tokens)
return out
@st.cache(
allow_output_mutation=True,
hash_funcs=tokenizer_hash_funcs,
)
def tag_text(text: str, tokenizer, model, device: torch.device) -> pd.DataFrame:
"""Tags a given text and creates an (exploded) DataFrame with the predicted labels and probabilities.
Args:
text (str): The text to be processed
tokenizer: Tokenizer to use
model (_type_): Model to use
device (torch.device): The device we want pytorch to use for its calcultaions.
Returns:
pd.DataFrame: A data frame holding the tagged text.
"""
tokens = tokenizer(text).tokens()
tokenized = tokenizer(text, return_tensors="pt")
word_ids = [w if w is not None else -1 for w in tokenized.word_ids()]
input_ids = tokenized.input_ids.to(device)
outputs = model(input_ids, output_hidden_states=True)
preds = torch.argmax(outputs.logits, dim=2)
preds = [model.config.id2label[p] for p in preds[0].cpu().numpy()]
hidden_states = outputs.hidden_states[-1][0].detach().cpu().numpy()
# hidden_states = np.mean([hidden_states, outputs.hidden_states[0][0].detach().cpu().numpy()], axis=0)
probs = 1 // (
torch.min(F.softmax(outputs.logits, dim=-1), dim=-1).values[0].detach().cpu().numpy()
)
df = pd.DataFrame(
[[tokens, word_ids, preds, probs, hidden_states]],
columns="tokens word_ids preds probs hidden_states".split(),
)
merged_df = pd.DataFrame(df.apply(align_sample, axis=1).tolist())
return explode_df(merged_df).reset_index().drop(columns=["index"])
def get_bg_color(label: str):
"""Retrieves a label's color from the session state."""
return st.session_state[f"color_{label}"]
def get_fg_color(bg_color_hex: str) -> str:
"""Chooses the proper (foreground) text color (black/white) for a given background color, maximizing contrast.
Adapted from https://gomakethings.com/dynamically-changing-the-text-color-based-on-background-color-contrast-with-vanilla-js/
Args:
bg_color_hex (str): The background color given as a HEX stirng.
Returns:
str: Either "black" or "white".
"""
r = int(bg_color_hex[1:3], 16)
g = int(bg_color_hex[3:5], 16)
b = int(bg_color_hex[5:7], 16)
yiq = ((r * 299) + (g * 587) + (b * 114)) / 1000
return "black" if (yiq >= 128) else "white"
def colorize_classes(df: pd.DataFrame) -> pd.DataFrame:
"""Colorizes the errors in the dataframe."""
def colorize_row(row):
return [
"background-color: "
+ ("white" if (row["labels"] == "IGN" or (row["preds"] == row["labels"])) else "pink")
+ ";"
] * len(row)
def colorize_col(col):
if col.name == "labels" or col.name == "preds":
bgs = []
fgs = []
for v in col.values:
bgs.append(get_bg_color(v.split("-")[1]) if "-" in v else "#ffffff")
fgs.append(get_fg_color(bgs[-1]))
return [f"background-color: {bg}; color: {fg};" for bg, fg in zip(bgs, fgs)]
return [""] * len(col)
df = df.reset_index().drop(columns=["index"]).T
return df # .style.apply(colorize_col, axis=0)
def htmlify_labeled_example(example: pd.DataFrame) -> str:
"""Builds an HTML (string) representation of a single example.
Args:
example (pd.DataFrame): The example to process.
Returns:
str: An HTML string representation of a single example.
"""
html = []
for _, row in example.iterrows():
pred = row.preds.split("-")[1] if "-" in row.preds else "O"
label = row.labels
label_class = row.labels.split("-")[1] if "-" in row.labels else "O"
color = get_bg_color(row.preds.split("-")[1]) if "-" in row.preds else "#000000"
true_color = get_bg_color(row.labels.split("-")[1]) if "-" in row.labels else "#000000"
font_color = get_fg_color(color) if color else "white"
true_font_color = get_fg_color(true_color) if true_color else "white"
is_correct = row.preds == row.labels
loss_html = (
""
if float(row.losses) < 0.01
else f"<span style='background-color: yellow; color: font_color; padding: 0 5px;'>{row.losses:.3f}</span>"
)
loss_html = ""
if row.labels == row.preds == "O":
html.append(f"<span>{row.tokens}</span>")
elif row.labels == "IGN":
assert False
else:
opacity = "1" if not is_correct else "0.5"
correct = (
""
if is_correct
else f"<span title='{label}' style='background-color: {true_color}; opacity: 1; color: {true_font_color}; padding: 0 5px; border: 1px solid black; min-width: 30px'>{classmap[label_class]}</span>"
)
pred_icon = classmap[pred] if pred != "O" and row.preds[:2] != "I-" else ""
html.append(
f"<span style='border: 1px solid black; color: {color}; padding: 0 5px;' title={row.preds}>{pred_icon + ' '}{row.tokens}</span>{correct}{loss_html}"
)
return " ".join(html)
def color_map_color(value: float, cmap_name="Set1", vmin=0, vmax=1) -> str:
"""Turns a value into a color using a color map."""
norm = matplotlib.colors.Normalize(vmin=vmin, vmax=vmax)
cmap = cm.get_cmap(cmap_name) # PiYG
rgba = cmap(norm(abs(value)))
color = matplotlib.colors.rgb2hex(rgba[:3])
return color