|
import torch
|
|
import torch.nn as nn
|
|
|
|
class SiameseNetwork(nn.Module):
|
|
def __init__(self):
|
|
super(SiameseNetwork, self).__init__()
|
|
|
|
self.cnn1 = nn.Sequential(
|
|
nn.Conv2d(1, 96, kernel_size=11, stride=1),
|
|
nn.ReLU(inplace=True),
|
|
nn.LocalResponseNorm(5, alpha=0.0001, beta=0.75, k=2),
|
|
nn.MaxPool2d(3, stride=2),
|
|
|
|
nn.Conv2d(96, 256, kernel_size=5, stride=1, padding=2),
|
|
nn.ReLU(inplace=True),
|
|
nn.LocalResponseNorm(5, alpha=0.0001, beta=0.75, k=2),
|
|
nn.MaxPool2d(3, stride=2),
|
|
nn.Dropout2d(p=0.3),
|
|
|
|
nn.Conv2d(256, 384, kernel_size=3, stride=1, padding=1),
|
|
nn.ReLU(inplace=True),
|
|
|
|
nn.Conv2d(384, 256, kernel_size=3, stride=1, padding=1),
|
|
nn.ReLU(inplace=True),
|
|
nn.MaxPool2d(3, stride=2),
|
|
nn.Dropout2d(p=0.3),
|
|
)
|
|
|
|
self.fc1 = nn.Sequential(
|
|
nn.Linear(25600, 1024),
|
|
nn.ReLU(inplace=True),
|
|
nn.Dropout2d(p=0.5),
|
|
|
|
nn.Linear(1024, 128),
|
|
nn.ReLU(inplace=True),
|
|
|
|
nn.Linear(128, 2)
|
|
)
|
|
|
|
def forward_once(self, x):
|
|
output = self.cnn1(x)
|
|
output = output.view(output.size()[0], -1)
|
|
output = self.fc1(output)
|
|
return output
|
|
|
|
def forward(self, input1, input2):
|
|
output1 = self.forward_once(input1)
|
|
output2 = self.forward_once(input2)
|
|
return output1, output2
|
|
|
|
|
|
def load_model(model_path):
|
|
model = SiameseNetwork()
|
|
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
|
|
model.eval()
|
|
return model
|
|
|