|
import os |
|
import time |
|
from typing import List, Tuple, Optional |
|
from pytube import YouTube |
|
from moviepy.editor import * |
|
import speech_recognition as sr |
|
|
|
import pandas as pd |
|
import numpy as np |
|
import google.generativeai as genai |
|
from tqdm.auto import tqdm |
|
import time |
|
|
|
import google.generativeai as genai |
|
import gradio as gr |
|
from PIL import Image |
|
|
|
print("google-generativeai:", genai.__version__) |
|
|
|
GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY") |
|
|
|
TITLE = """<h1 align="center">تجربة جزئية إقتراح الآيات من ضياء</h1>""" |
|
SUBTITLE = """<h2 align="center">Play with Gemini Pro and Gemini Pro Vision API 🖇️</h2>""" |
|
DUPLICATE = """ |
|
<div style="text-align: center; display: flex; justify-content: center; align-items: center;"> |
|
<a href="https://huggingface.co/spaces/SkalskiP/ChatGemini?duplicate=true"> |
|
<img src="https://bit.ly/3gLdBN6" alt="Duplicate Space" style="margin-right: 10px;"> |
|
</a> |
|
<span>Duplicate the Space and run securely with your |
|
<a href="https://makersuite.google.com/app/apikey">GOOGLE API KEY</a>. |
|
</span> |
|
</div> |
|
""" |
|
|
|
|
|
IMAGE_WIDTH = 512 |
|
|
|
|
|
safety_settings = [ |
|
{ |
|
"category": "HARM_CATEGORY_DANGEROUS", |
|
"threshold": "BLOCK_NONE", |
|
}, |
|
{ |
|
"category": "HARM_CATEGORY_HARASSMENT", |
|
"threshold": "BLOCK_NONE", |
|
}, |
|
{ |
|
"category": "HARM_CATEGORY_HATE_SPEECH", |
|
"threshold": "BLOCK_NONE", |
|
}, |
|
{ |
|
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", |
|
"threshold": "BLOCK_NONE", |
|
}, |
|
{ |
|
"category": "HARM_CATEGORY_DANGEROUS_CONTENT", |
|
"threshold": "BLOCK_NONE", |
|
},] |
|
|
|
|
|
def extract_text_from(vid_link): |
|
video_url = vid_link |
|
yt = YouTube(video_url) |
|
text = "" |
|
audio_stream = yt.streams.get_audio_only() |
|
audio_stream.download(filename='tmp.mp4') |
|
audio_clip = AudioFileClip('tmp.mp4') |
|
audio_clip.write_audiofile('tmp.wav') |
|
r = sr.Recognizer() |
|
with sr.AudioFile('tmp.wav') as source: |
|
audio_data = r.record(source) |
|
try: |
|
text = r.recognize_google(audio_data, language='ar') |
|
except sr.UnknownValueError: |
|
print("Google Speech Recognition could not understand audio") |
|
except sr.RequestError as e: |
|
print("Could not request results from Google Speech Recognition service; {0}".format(e)) |
|
return text |
|
|
|
|
|
def preprocess_stop_sequences(stop_sequences: str) -> Optional[List[str]]: |
|
if not stop_sequences: |
|
return None |
|
return [sequence.strip() for sequence in stop_sequences.split(",")] |
|
|
|
|
|
def preprocess_image(image: Image.Image) -> Optional[Image.Image]: |
|
image_height = int(image.height * IMAGE_WIDTH / image.width) |
|
return image.resize((IMAGE_WIDTH, image_height)) |
|
|
|
|
|
def user(text_prompt: str, chatbot: List[Tuple[str, str]]): |
|
return "", chatbot + [[text_prompt, None]] |
|
|
|
|
|
def bot( |
|
google_key: str, |
|
image_prompt: Optional[Image.Image], |
|
temperature: float, |
|
max_output_tokens: int, |
|
stop_sequences: str, |
|
top_k: int, |
|
top_p: float, |
|
chatbot: List[Tuple[str, str]] |
|
): |
|
google_key = google_key if google_key else GOOGLE_API_KEY |
|
if not google_key: |
|
raise ValueError( |
|
"GOOGLE_API_KEY is not set. " |
|
"Please follow the instructions in the README to set it up.") |
|
|
|
|
|
txt_in = chatbot[-1][0] |
|
|
|
|
|
|
|
|
|
|
|
genai.configure(api_key=google_key) |
|
|
|
generation_config = genai.types.GenerationConfig( |
|
temperature=0.7, |
|
max_output_tokens=2048, |
|
stop_sequences=preprocess_stop_sequences(stop_sequences=stop_sequences), |
|
top_k=40, |
|
top_p=0.95) |
|
|
|
if "youtube" in txt_in: |
|
text_prompt = extract_text_from(txt_in) |
|
prompt= "استخرج كلمات مفتاحية من النص التالي: "+text_prompt |
|
model = genai.GenerativeModel('gemini-pro') |
|
response = model.generate_content( |
|
prompt, |
|
stream=True, |
|
generation_config=generation_config,safety_settings=safety_settings) |
|
response.resolve() |
|
time.sleep(0.1) |
|
|
|
out1 = response.text |
|
|
|
model2 = genai.GenerativeModel('gemini-pro') |
|
|
|
prompt = "أذكر لي آية من القران الكريم تتحدث عن أحد هذه المواضيع او اكثر: "+ out1 + " واشرح الآيه وفسرها باللغة العربية." |
|
response2 = model2.generate_content( |
|
prompt, |
|
stream=True, |
|
generation_config=generation_config, safety_settings=safety_settings) |
|
response2.resolve() |
|
|
|
elif image_prompt is None: |
|
model = genai.GenerativeModel('gemini-pro') |
|
|
|
prompt= "استخرج كلمات مفتاحية من النص التالي: "+txt_in |
|
model = genai.GenerativeModel('gemini-pro') |
|
response = model.generate_content( |
|
prompt, |
|
stream=True, |
|
generation_config=generation_config,safety_settings=safety_settings) |
|
response.resolve() |
|
time.sleep(0.1) |
|
|
|
out1 = response.text |
|
|
|
model2 = genai.GenerativeModel('gemini-pro') |
|
|
|
prompt = "أذكر لي آية من القران الكريم تتحدث عن أحد هذه المواضيع او اكثر: "+ out1 + " واشرح الآيه وفسرها باللغة العربية." |
|
response2 = model2.generate_content( |
|
prompt, |
|
stream=True, |
|
generation_config=generation_config, safety_settings=safety_settings) |
|
response2.resolve() |
|
|
|
else: |
|
prompt= "اكتب لي وصف عن الصورة المرفقة " |
|
image_prompt = preprocess_image(image_prompt) |
|
model = genai.GenerativeModel('gemini-pro-vision') |
|
response = model.generate_content( |
|
contents=[prompt, image_prompt], |
|
stream=True, |
|
generation_config=generation_config, safety_settings=safety_settings) |
|
response.resolve() |
|
time.sleep(0.1) |
|
out1 = response.text |
|
|
|
prompt= "استخرج كلمات مفتاحية من النص التالي: "+out1 |
|
model1 = genai.GenerativeModel('gemini-pro') |
|
response1 = model1.generate_content( |
|
prompt, |
|
stream=True, |
|
generation_config=generation_config,safety_settings=safety_settings) |
|
response1.resolve() |
|
time.sleep(0.1) |
|
|
|
out2 = response1.text |
|
|
|
model2 = genai.GenerativeModel('gemini-pro') |
|
|
|
prompt = "أذكر لي آية من القران الكريم تتحدث عن أحد هذه المواضيع او اكثر: "+ out2 + " واشرح الآيه وفسرها باللغة العربية." |
|
response2 = model2.generate_content( |
|
prompt, |
|
stream=True, |
|
generation_config=generation_config, safety_settings=safety_settings) |
|
response2.resolve() |
|
time.sleep(0.1) |
|
|
|
|
|
|
|
|
|
chatbot[-1][1] = "" |
|
for chunk in response2: |
|
for i in range(0, len(chunk.text), 10): |
|
section = chunk.text[i:i + 10] |
|
chatbot[-1][1] += section |
|
time.sleep(0.01) |
|
yield chatbot |
|
|
|
|
|
google_key_component = gr.Textbox( |
|
label="GOOGLE API KEY", |
|
value="", |
|
type="password", |
|
placeholder="...", |
|
info="You have to provide your own GOOGLE_API_KEY for this app to function properly", |
|
visible=GOOGLE_API_KEY is None |
|
) |
|
|
|
image_prompt_component = gr.Image(type="pil", label="Image", scale=1) |
|
chatbot_component = gr.Chatbot( |
|
label='Diyaa', |
|
bubble_full_width=False, |
|
scale=2, |
|
rtl=True |
|
) |
|
text_prompt_component = gr.Textbox( |
|
placeholder="مرحبا!", |
|
label="ادخل رابط يوتيوب لإستخراج الآيات أو نص\موضوع معين" |
|
) |
|
run_button_component = gr.Button() |
|
temperature_component = gr.Slider( |
|
minimum=0, |
|
maximum=1.0, |
|
value=0.4, |
|
step=0.05, |
|
label="Temperature", |
|
info=( |
|
"Temperature controls the degree of randomness in token selection. Lower " |
|
"temperatures are good for prompts that expect a true or correct response, " |
|
"while higher temperatures can lead to more diverse or unexpected results. " |
|
)) |
|
max_output_tokens_component = gr.Slider( |
|
minimum=1, |
|
maximum=2048, |
|
value=1024, |
|
step=1, |
|
label="Token limit", |
|
info=( |
|
"Token limit determines the maximum amount of text output from one prompt. A " |
|
"token is approximately four characters. The default value is 2048." |
|
)) |
|
stop_sequences_component = gr.Textbox( |
|
label="Add stop sequence", |
|
value="", |
|
type="text", |
|
placeholder="STOP, END", |
|
info=( |
|
"A stop sequence is a series of characters (including spaces) that stops " |
|
"response generation if the model encounters it. The sequence is not included " |
|
"as part of the response. You can add up to five stop sequences." |
|
)) |
|
top_k_component = gr.Slider( |
|
minimum=1, |
|
maximum=40, |
|
value=32, |
|
step=1, |
|
label="Top-K", |
|
info=( |
|
"Top-k changes how the model selects tokens for output. A top-k of 1 means the " |
|
"selected token is the most probable among all tokens in the model’s " |
|
"vocabulary (also called greedy decoding), while a top-k of 3 means that the " |
|
"next token is selected from among the 3 most probable tokens (using " |
|
"temperature)." |
|
)) |
|
top_p_component = gr.Slider( |
|
minimum=0, |
|
maximum=1, |
|
value=1, |
|
step=0.01, |
|
label="Top-P", |
|
info=( |
|
"Top-p changes how the model selects tokens for output. Tokens are selected " |
|
"from most probable to least until the sum of their probabilities equals the " |
|
"top-p value. For example, if tokens A, B, and C have a probability of .3, .2, " |
|
"and .1 and the top-p value is .5, then the model will select either A or B as " |
|
"the next token (using temperature). " |
|
)) |
|
|
|
user_inputs = [ |
|
text_prompt_component, |
|
chatbot_component |
|
] |
|
|
|
bot_inputs = [ |
|
google_key_component, |
|
image_prompt_component, |
|
temperature_component, |
|
max_output_tokens_component, |
|
stop_sequences_component, |
|
top_k_component, |
|
top_p_component, |
|
chatbot_component |
|
] |
|
|
|
with gr.Blocks() as demo: |
|
gr.HTML(TITLE) |
|
|
|
|
|
with gr.Column(): |
|
google_key_component.render() |
|
with gr.Row(): |
|
image_prompt_component.render() |
|
chatbot_component.render() |
|
text_prompt_component.render() |
|
run_button_component.render() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
run_button_component.click( |
|
fn=user, |
|
inputs=user_inputs, |
|
outputs=[text_prompt_component, chatbot_component], |
|
queue=False |
|
).then( |
|
fn=bot, inputs=bot_inputs, outputs=[chatbot_component], |
|
) |
|
|
|
text_prompt_component.submit( |
|
fn=user, |
|
inputs=user_inputs, |
|
outputs=[text_prompt_component, chatbot_component], |
|
queue=False |
|
).then( |
|
fn=bot, inputs=bot_inputs, outputs=[chatbot_component], |
|
) |
|
|
|
demo.queue(max_size=99).launch(debug=False, show_error=True) |
|
|