Upload folder using huggingface_hub
Browse files
app.py
CHANGED
@@ -5,7 +5,7 @@ from panna import ControlNetSD3
|
|
5 |
|
6 |
model = ControlNetSD3(condition_type="canny")
|
7 |
title = ("# [ControlNet SD3](https://huggingface.co/docs/diffusers/en/api/pipelines/controlnet_sd3) (Tile Conditioning)\n"
|
8 |
-
"The demo is part of [panna](https://github.com/
|
9 |
example_files = []
|
10 |
for n in range(1, 10):
|
11 |
load_image(f"https://huggingface.co/spaces/depth-anything/Depth-Anything-V2/resolve/main/assets/examples/demo{n:0>2}.jpg").save(f"demo{n:0>2}.jpg")
|
@@ -37,9 +37,9 @@ with gr.Blocks() as demo:
|
|
37 |
negative_prompt = gr.Text(label="Negative Prompt", max_lines=1, placeholder="Enter a negative prompt")
|
38 |
seed = gr.Slider(label="Seed", minimum=0, maximum=1_000_000, step=1, value=0)
|
39 |
with gr.Row():
|
40 |
-
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=7
|
41 |
controlnet_conditioning_scale = gr.Slider(label="Controlnet conditioning scale", minimum=0.0, maximum=1.0, step=0.05, value=0.5)
|
42 |
-
num_inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=50, step=1, value=
|
43 |
examples = gr.Examples(examples=example_files, inputs=[init_image])
|
44 |
gr.on(
|
45 |
triggers=[run_button.click, prompt.submit, negative_prompt.submit],
|
|
|
5 |
|
6 |
model = ControlNetSD3(condition_type="canny")
|
7 |
title = ("# [ControlNet SD3](https://huggingface.co/docs/diffusers/en/api/pipelines/controlnet_sd3) (Tile Conditioning)\n"
|
8 |
+
"The demo is part of [panna](https://github.com/asahi417/panna) project.")
|
9 |
example_files = []
|
10 |
for n in range(1, 10):
|
11 |
load_image(f"https://huggingface.co/spaces/depth-anything/Depth-Anything-V2/resolve/main/assets/examples/demo{n:0>2}.jpg").save(f"demo{n:0>2}.jpg")
|
|
|
37 |
negative_prompt = gr.Text(label="Negative Prompt", max_lines=1, placeholder="Enter a negative prompt")
|
38 |
seed = gr.Slider(label="Seed", minimum=0, maximum=1_000_000, step=1, value=0)
|
39 |
with gr.Row():
|
40 |
+
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=7)
|
41 |
controlnet_conditioning_scale = gr.Slider(label="Controlnet conditioning scale", minimum=0.0, maximum=1.0, step=0.05, value=0.5)
|
42 |
+
num_inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=50, step=1, value=28)
|
43 |
examples = gr.Examples(examples=example_files, inputs=[init_image])
|
44 |
gr.on(
|
45 |
triggers=[run_button.click, prompt.submit, negative_prompt.submit],
|