Upload 15 files
Browse files- .gitattributes +3 -0
- SpaceGen/SpaceGen_Large.keras +3 -0
- SpaceGen/__init__.py +2 -0
- SpaceGen/model.pth +3 -0
- SpaceGen/model.py +36 -0
- SpaceGen/preprocessor.py +159 -0
- SpaceGen/utils.py +72 -0
- app.py +28 -0
- images/logo.png +0 -0
- images/old.jpg +3 -0
- images/retro-space.jpg +3 -0
- main.html +25 -0
- requirements.txt +9 -0
- runtime.txt +1 -0
- script.js +21 -0
- style98.css +45 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
images/old.jpg filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
images/retro-space.jpg filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
SpaceGen/SpaceGen_Large.keras filter=lfs diff=lfs merge=lfs -text
|
SpaceGen/SpaceGen_Large.keras
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:094bdd0ba837d99e33de2e8f03bf1d387e2102f57f95ff50e1ba6bd4f325e4cb
|
| 3 |
+
size 27206663
|
SpaceGen/__init__.py
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .preprocessor import Preprocessor
|
| 2 |
+
from .utils import *
|
SpaceGen/model.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:163e5fec68f52254f5c0b7b3001058c5672a6290f030b134b5d5b41266e6bfa9
|
| 3 |
+
size 9091744
|
SpaceGen/model.py
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import tensorflow as tf
|
| 2 |
+
from .preprocessor import *
|
| 3 |
+
from .utils import *
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
# Path to your Keras model
|
| 7 |
+
MODEL_PATH = "SpaceGen/SpaceGen_Large.keras"
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
# Compatibility shim: accept and ignore deprecated/unknown 'time_major'
|
| 11 |
+
class LSTMCompat(tf.keras.layers.LSTM):
|
| 12 |
+
def __init__(self, *args, time_major=None, **kwargs):
|
| 13 |
+
super().__init__(*args, **kwargs)
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def _load_model(path: str):
|
| 17 |
+
"""Load a Keras model, tolerating legacy 'time_major' in LSTM configs."""
|
| 18 |
+
try:
|
| 19 |
+
return tf.keras.models.load_model(path)
|
| 20 |
+
except ValueError as e:
|
| 21 |
+
if "time_major" in str(e):
|
| 22 |
+
return tf.keras.models.load_model(path, custom_objects={"LSTM": LSTMCompat})
|
| 23 |
+
raise
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
class SpaceGenModel:
|
| 27 |
+
def __init__(self, model_path: str = MODEL_PATH):
|
| 28 |
+
self.model = _load_model(model_path)
|
| 29 |
+
|
| 30 |
+
def fix_space(self, text: str) -> str:
|
| 31 |
+
text = clean_sentence(text)
|
| 32 |
+
X = text_to_X(text)
|
| 33 |
+
predictions = self.model.predict(X, verbose=0)
|
| 34 |
+
predicted_labels = [1 if pred[1] > 0.5 else 0 for pred in predictions[0]]
|
| 35 |
+
fixed_text = insert_spaces(text.replace(" ", ""), find_indices(predicted_labels))
|
| 36 |
+
return fixed_text
|
SpaceGen/preprocessor.py
ADDED
|
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import numpy as np
|
| 3 |
+
from sklearn.preprocessing import OneHotEncoder
|
| 4 |
+
|
| 5 |
+
class Preprocessor:
|
| 6 |
+
def __init__(self, content = "helloworld", size= 10, past_capacity = 5 , future_capacity = 5):
|
| 7 |
+
self.size = size
|
| 8 |
+
self.content = content[:self.size]
|
| 9 |
+
self.past_capacity = past_capacity
|
| 10 |
+
self.future_capacity = future_capacity
|
| 11 |
+
self.num_features = self.past_capacity + self.future_capacity + 1 # 1 for letter
|
| 12 |
+
self.vocabulary = []
|
| 13 |
+
|
| 14 |
+
def create_vocabulary(self, correct_txt):
|
| 15 |
+
'''
|
| 16 |
+
Returns the unique letters of the given text + '-1'
|
| 17 |
+
'''
|
| 18 |
+
vocabulary = list({b for b in bytes(correct_txt, 'utf-8')})
|
| 19 |
+
vocabulary.append(-1)
|
| 20 |
+
vocabulary = sorted(vocabulary)
|
| 21 |
+
self.vocabulary = vocabulary
|
| 22 |
+
return None
|
| 23 |
+
|
| 24 |
+
@staticmethod
|
| 25 |
+
def create_decision_vector(W: list, C: list):
|
| 26 |
+
'''
|
| 27 |
+
Returns the Decision Vector(D),
|
| 28 |
+
given Wrong Vector(W) and Correct Vector(C)
|
| 29 |
+
'''
|
| 30 |
+
D = []
|
| 31 |
+
w_i = 0
|
| 32 |
+
c_i = 0
|
| 33 |
+
while w_i < len(W):
|
| 34 |
+
if W[w_i] == C[c_i]:
|
| 35 |
+
D.append('K')
|
| 36 |
+
w_i += 1
|
| 37 |
+
c_i += 1
|
| 38 |
+
elif W[w_i] == 32 and C[c_i] != 32 :
|
| 39 |
+
D.append('D')
|
| 40 |
+
w_i += 1
|
| 41 |
+
elif C[c_i] == 32 and W[w_i] != 32:
|
| 42 |
+
D.append('I')
|
| 43 |
+
c_i += 1
|
| 44 |
+
w_i += 1
|
| 45 |
+
else:
|
| 46 |
+
c_i += 1
|
| 47 |
+
return D
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
@staticmethod
|
| 51 |
+
def to_correct(W, D):
|
| 52 |
+
'''
|
| 53 |
+
Returns the correct text,
|
| 54 |
+
given Wrong Vector(W) and Decision Vector(D)
|
| 55 |
+
'''
|
| 56 |
+
output_vec = []
|
| 57 |
+
for i in range(0, len(D)):
|
| 58 |
+
if D[i] == 'K':
|
| 59 |
+
output_vec.append(W[i])
|
| 60 |
+
elif D[i] == 'I':
|
| 61 |
+
output_vec.append(32)
|
| 62 |
+
output_vec.append(W[i])
|
| 63 |
+
elif D[i] == 'D':
|
| 64 |
+
pass
|
| 65 |
+
decoded_text = bytes(output_vec).decode()
|
| 66 |
+
return decoded_text
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
@staticmethod
|
| 70 |
+
def to_bytes_list(text: str, encoding = 'UTF-8'):
|
| 71 |
+
'''
|
| 72 |
+
Returns the bytes list of a given text
|
| 73 |
+
'''
|
| 74 |
+
return [b for b in bytes(text, encoding)]
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
@staticmethod
|
| 78 |
+
def to_one_hot_df(wrong_txt, D):
|
| 79 |
+
'''
|
| 80 |
+
Returns the one hot encoded dataframe,
|
| 81 |
+
given Wrong Vector(W) and Decision Vector(D)
|
| 82 |
+
'''
|
| 83 |
+
df = pd.DataFrame({'letter':[l for l in wrong_txt],'decision':D})
|
| 84 |
+
encoding = OneHotEncoder()
|
| 85 |
+
y_matrix = encoding.fit_transform(df[['decision']])
|
| 86 |
+
onehot_df = pd.DataFrame(y_matrix.toarray(), columns = encoding.get_feature_names_out(['decision']) )
|
| 87 |
+
onehot_df = onehot_df.astype('int')
|
| 88 |
+
example_df = pd.concat([df, onehot_df], axis=1)
|
| 89 |
+
example_df =example_df.drop(['decision'], axis=1)
|
| 90 |
+
return example_df
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
@staticmethod
|
| 94 |
+
def decode_vec(arr):
|
| 95 |
+
'''
|
| 96 |
+
Returns the decoded text,
|
| 97 |
+
given the bytes list
|
| 98 |
+
'''
|
| 99 |
+
return bytes(arr).decode()
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
@staticmethod
|
| 103 |
+
def sliding_window_past(arr, window_size = 5):
|
| 104 |
+
'''
|
| 105 |
+
Returns the past sliding window of the given array and window size
|
| 106 |
+
'''
|
| 107 |
+
arr = list(arr)
|
| 108 |
+
new_arr = []
|
| 109 |
+
for i in range(len(arr)):
|
| 110 |
+
start_window = max(0, i- window_size)
|
| 111 |
+
tmp_seq = arr[start_window:i]
|
| 112 |
+
if window_size - len(tmp_seq) ==0:
|
| 113 |
+
new_arr.append(tmp_seq)
|
| 114 |
+
else:
|
| 115 |
+
new_arr.append([-1] * (window_size - len(tmp_seq)) + tmp_seq)
|
| 116 |
+
return new_arr
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
@staticmethod
|
| 120 |
+
def sliding_window_future(arr, window_size = 5):
|
| 121 |
+
'''
|
| 122 |
+
Returns the future sliding window of the given array and window size
|
| 123 |
+
'''
|
| 124 |
+
arr = list(arr)
|
| 125 |
+
seq = []
|
| 126 |
+
for i in range(len(arr)):
|
| 127 |
+
p = arr[i+1:i+window_size+1]
|
| 128 |
+
if window_size - len(p) ==0:
|
| 129 |
+
seq.append(p)
|
| 130 |
+
else:
|
| 131 |
+
seq.append(p + [-1] * (window_size - len(p)))
|
| 132 |
+
return seq
|
| 133 |
+
|
| 134 |
+
@staticmethod
|
| 135 |
+
def insert_random_spaces(text, percent = .25):
|
| 136 |
+
'''
|
| 137 |
+
Returns the text with random spaces inserted
|
| 138 |
+
'''
|
| 139 |
+
l = list(text)
|
| 140 |
+
rand_indices = np.random.randint(0, len(l)+1, int(np.round(len(l) * percent)))
|
| 141 |
+
print(rand_indices)
|
| 142 |
+
t = 1
|
| 143 |
+
for i in range(len(l)+1):
|
| 144 |
+
if i in rand_indices:
|
| 145 |
+
l.insert(i + t, ' ')
|
| 146 |
+
t+=1
|
| 147 |
+
new_txt = ''.join(l).strip()
|
| 148 |
+
return new_txt
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
@staticmethod
|
| 152 |
+
def prob_to_decision(a):
|
| 153 |
+
'''
|
| 154 |
+
Return I or K given probability vector
|
| 155 |
+
'''
|
| 156 |
+
if a[0] > a[1]:
|
| 157 |
+
return 'I'
|
| 158 |
+
else:
|
| 159 |
+
return 'K'
|
SpaceGen/utils.py
ADDED
|
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import string
|
| 4 |
+
import re
|
| 5 |
+
from .preprocessor import Preprocessor as sp
|
| 6 |
+
|
| 7 |
+
max_len = 853
|
| 8 |
+
|
| 9 |
+
def text_to_X(text):
|
| 10 |
+
test_text = text.replace(' ', '')
|
| 11 |
+
data = pd.DataFrame([test_text], columns=["correct_sentence"])
|
| 12 |
+
data['wrong_sentence'] = data['correct_sentence'].apply(lambda text: text.replace(' ',''))
|
| 13 |
+
data['bytes_correct'] = data['correct_sentence'].apply(lambda text: sp.to_bytes_list(text))
|
| 14 |
+
data['bytes_wrong'] = data['wrong_sentence'].apply(lambda text: sp.to_bytes_list(text))
|
| 15 |
+
data['decision'] = data[['bytes_wrong','bytes_correct']].apply(lambda row: sp.create_decision_vector(row['bytes_wrong'], row['bytes_correct']), axis=1)
|
| 16 |
+
dec_dict = {'K': 0, 'I': 1}
|
| 17 |
+
data['decision'] = data['decision'].apply(lambda dec: [dec_dict[d] for d in dec])
|
| 18 |
+
data = data[data.bytes_wrong.apply(lambda bytes_wrong: len(bytes_wrong) <= 1000)]
|
| 19 |
+
lngths = [len(bytes_wrong) for bytes_wrong in data.bytes_wrong.tolist()]
|
| 20 |
+
|
| 21 |
+
data['bytes_wrong_padded'] = data['bytes_wrong'].apply(lambda bytes_wrong: bytes_wrong + [0]*(max_len-len(bytes_wrong)))
|
| 22 |
+
data['decision_padded'] = data['decision'].apply(lambda decision: decision + [0]*(max_len-len(decision)))
|
| 23 |
+
data['bytes_wrong_padded'] = data['bytes_wrong_padded'].apply(lambda bytes_wrong: np.array(bytes_wrong))
|
| 24 |
+
data['decision_padded'] = data['decision_padded'].apply(lambda decision: np.array(decision))
|
| 25 |
+
data['wrong_sentence_padded'] = data['wrong_sentence'].apply(lambda wrong_sentence: wrong_sentence + '#'*(max_len-len(wrong_sentence)))
|
| 26 |
+
data['bytes_wrong_one_hot'] = data['wrong_sentence_padded'].apply(one_hot_encode)
|
| 27 |
+
data['bytes_wrong_one_hot'] = data['bytes_wrong_one_hot'].apply(lambda bytes_wrong: np.array(bytes_wrong))
|
| 28 |
+
X = np.stack(data.bytes_wrong_one_hot)
|
| 29 |
+
return X
|
| 30 |
+
|
| 31 |
+
def find_indices(lst):
|
| 32 |
+
indices = []
|
| 33 |
+
for idx, value in enumerate(lst):
|
| 34 |
+
if value == 1:
|
| 35 |
+
indices.append(idx)
|
| 36 |
+
return indices
|
| 37 |
+
|
| 38 |
+
def insert_spaces(text, indices):
|
| 39 |
+
result = []
|
| 40 |
+
for i, char in enumerate(text):
|
| 41 |
+
if i in indices:
|
| 42 |
+
result.append(" ")
|
| 43 |
+
result.append(char)
|
| 44 |
+
return "".join(result)
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def clean_sentence(sentence):
|
| 48 |
+
pattern = r'[^A-Za-z#.\'!, ]'
|
| 49 |
+
return re.sub(pattern, '', sentence)
|
| 50 |
+
|
| 51 |
+
import numpy as np
|
| 52 |
+
|
| 53 |
+
def one_hot_encode(text):
|
| 54 |
+
# Define the vocabulary
|
| 55 |
+
vocab = list('abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ#.\'!,')
|
| 56 |
+
|
| 57 |
+
vocab_size = len(vocab)
|
| 58 |
+
|
| 59 |
+
# Create a mapping from character to index
|
| 60 |
+
char_to_index = {char: idx for idx, char in enumerate(vocab)}
|
| 61 |
+
|
| 62 |
+
# Initialize the one-hot encoded array
|
| 63 |
+
one_hot_encoded = np.zeros((len(text), vocab_size), dtype=int)
|
| 64 |
+
|
| 65 |
+
# Convert each character to one-hot encoded vector
|
| 66 |
+
for i, char in enumerate(text):
|
| 67 |
+
if char in char_to_index: # Ensure character is in the vocabulary
|
| 68 |
+
one_hot_encoded[i, char_to_index[char]] = 1
|
| 69 |
+
else:
|
| 70 |
+
raise ValueError(f"Character '{char}' not in vocabulary")
|
| 71 |
+
|
| 72 |
+
return one_hot_encoded
|
app.py
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from flask import Flask, request, jsonify, send_from_directory
|
| 2 |
+
from SpaceGen.model import SpaceGenModel
|
| 3 |
+
from flask_cors import CORS
|
| 4 |
+
|
| 5 |
+
app = Flask(__name__, static_folder='.', static_url_path='')
|
| 6 |
+
CORS(app)
|
| 7 |
+
MODEL_PATH = "SpaceGen/SpaceGen_Large.keras"
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
model = SpaceGenModel(model_path=MODEL_PATH)
|
| 12 |
+
@app.route('/api/data', methods=['POST'])
|
| 13 |
+
def space_text():
|
| 14 |
+
if request.is_json:
|
| 15 |
+
data = request.get_json()
|
| 16 |
+
corrupted_text = data.get('corrupted_text')
|
| 17 |
+
spaced_text = model.fix_space(corrupted_text)
|
| 18 |
+
return jsonify({'spaced_text': spaced_text})
|
| 19 |
+
|
| 20 |
+
@app.get('/')
|
| 21 |
+
def index():
|
| 22 |
+
return send_from_directory('.', 'main.html')
|
| 23 |
+
|
| 24 |
+
import os
|
| 25 |
+
|
| 26 |
+
if __name__ == '__main__':
|
| 27 |
+
port = int(os.environ.get("PORT", 5000))
|
| 28 |
+
app.run(host="0.0.0.0", port=port, debug=False)
|
images/logo.png
ADDED
|
images/old.jpg
ADDED
|
Git LFS Details
|
images/retro-space.jpg
ADDED
|
Git LFS Details
|
main.html
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<!DOCTYPE html>
|
| 2 |
+
<html>
|
| 3 |
+
<head>
|
| 4 |
+
<title>SpaceGen</title>
|
| 5 |
+
<link rel="stylesheet" type="text/css" href="style98.css">
|
| 6 |
+
<script src="script.js" defer></script>
|
| 7 |
+
</head>
|
| 8 |
+
<body>
|
| 9 |
+
<h1>SpaceGen</h1>
|
| 10 |
+
<h6>Don't mess with the SpaceGen</h6>
|
| 11 |
+
<div class="button-container">
|
| 12 |
+
<button id="aboutButton">About</button>
|
| 13 |
+
</div>
|
| 14 |
+
<div class="input-container">
|
| 15 |
+
<textarea id="userInput" rows="12" cols="50" placeholder="Enter corrupted text here">T hel ittlegi rlra nthro ughth epa rkc has ing abut terfly.</textarea>
|
| 16 |
+
</div>
|
| 17 |
+
<div class="button-container">
|
| 18 |
+
<button id="generateButton">Fix Space</button>
|
| 19 |
+
</div>
|
| 20 |
+
<div class="output-container">
|
| 21 |
+
<textarea id="outputText" rows="12" cols="50" placeholder="Gently spaced text will be outputted here..." readonly></textarea>
|
| 22 |
+
</div>
|
| 23 |
+
|
| 24 |
+
</body>
|
| 25 |
+
</html>
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
setuptools>=42
|
| 2 |
+
wheel
|
| 3 |
+
fastapi==0.116.1
|
| 4 |
+
Flask==3.1.2
|
| 5 |
+
flask-cors==6.0.1
|
| 6 |
+
scikit-learn==1.6.1
|
| 7 |
+
tensorflow==2.15.0
|
| 8 |
+
pandas
|
| 9 |
+
numpy
|
runtime.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
python-3.9.18
|
script.js
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
async function space_text(){
|
| 2 |
+
let corrupted_text = document.getElementById('userInput').value;
|
| 3 |
+
const response = await fetch('/api/data', {
|
| 4 |
+
method: 'POST',
|
| 5 |
+
headers: {
|
| 6 |
+
'Content-Type': 'application/json'
|
| 7 |
+
},
|
| 8 |
+
body: JSON.stringify({ corrupted_text: corrupted_text })
|
| 9 |
+
});
|
| 10 |
+
|
| 11 |
+
const data = await response.json();
|
| 12 |
+
let result = document.getElementById('outputText');
|
| 13 |
+
result.value = data.spaced_text;
|
| 14 |
+
}
|
| 15 |
+
|
| 16 |
+
let btn = document.getElementById('generateButton').addEventListener('click', space_text);
|
| 17 |
+
|
| 18 |
+
document.getElementById("aboutButton").addEventListener("click", () => {
|
| 19 |
+
const aboutText = `S pacege nis ana cad emicpro jec t d e vel oped b y As af De lme di g o an d R omi Zar chid uri ng the irgrad uates tudiesin N eu ro sc ience and D ata Sci ence. I t d emons trat es the use of a Long Short-Term Memory arti ficial ne ural net work for the au toma tic det ection an d corre ction of miss ing and mis placed sp aces i n t ext.`;
|
| 20 |
+
document.getElementById("userInput").value = aboutText;
|
| 21 |
+
}); s
|
style98.css
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
body {
|
| 2 |
+
background-image: url('images/retro-space.jpg');
|
| 3 |
+
background-size: cover;
|
| 4 |
+
background-repeat: no-repeat;
|
| 5 |
+
font-family: Arial, sans-serif;
|
| 6 |
+
color: white;
|
| 7 |
+
text-align: center;
|
| 8 |
+
}
|
| 9 |
+
|
| 10 |
+
h1 {
|
| 11 |
+
margin-bottom: 1px;
|
| 12 |
+
font-family: 'Courier New', Courier, monospace;
|
| 13 |
+
font-size: 42px;
|
| 14 |
+
padding-top: 1px;
|
| 15 |
+
}
|
| 16 |
+
|
| 17 |
+
h6 {
|
| 18 |
+
margin-bottom: 90px;
|
| 19 |
+
font-family: 'Courier New', Courier, monospace;
|
| 20 |
+
font-size: 14px;
|
| 21 |
+
}
|
| 22 |
+
|
| 23 |
+
.button-container {
|
| 24 |
+
margin-bottom: 35px;
|
| 25 |
+
}
|
| 26 |
+
|
| 27 |
+
button {
|
| 28 |
+
background-color: rgba(47, 28, 113, 0.5);
|
| 29 |
+
color: white;
|
| 30 |
+
font-size: 14px;
|
| 31 |
+
}
|
| 32 |
+
|
| 33 |
+
textarea {
|
| 34 |
+
padding-top: 5px;
|
| 35 |
+
margin-bottom: 25px;
|
| 36 |
+
font-size: 14px;
|
| 37 |
+
border-radius: 5px;
|
| 38 |
+
border: 1px solid #ccc;
|
| 39 |
+
background-color: rgba(0, 0, 0, 0.5);
|
| 40 |
+
color: white;
|
| 41 |
+
width: 100%;
|
| 42 |
+
max-width: 500px; /* Limit maximum width if needed */
|
| 43 |
+
box-sizing: border-box; /* Ensures padding does not affect width */
|
| 44 |
+
resize: vertical; /* Allows user to resize vertically */
|
| 45 |
+
}
|