Spaces:
Sleeping
Sleeping
asadAbdullah
commited on
Commit
•
e0c3387
1
Parent(s):
6feb2e4
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,9 @@
|
|
2 |
import os
|
3 |
import pandas as pd
|
4 |
import streamlit as st
|
5 |
-
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
|
|
|
|
|
6 |
from transformers import pipeline
|
7 |
from sentence_transformers import SentenceTransformer, util
|
8 |
import requests
|
@@ -18,8 +20,28 @@ except FileNotFoundError:
|
|
18 |
st.error("Dataset file not found. Please upload it to this directory.")
|
19 |
|
20 |
# Load DistilBERT Tokenizer and Model
|
21 |
-
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
|
22 |
-
model = DistilBertForSequenceClassification.from_pretrained('distilbert-base-uncased')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
# Preprocessing the dataset (if needed)
|
25 |
if 'combined_description' not in data.columns:
|
|
|
2 |
import os
|
3 |
import pandas as pd
|
4 |
import streamlit as st
|
5 |
+
# from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
|
6 |
+
from transformers import DistilBertTokenizerFast, DistilBertForSequenceClassification
|
7 |
+
|
8 |
from transformers import pipeline
|
9 |
from sentence_transformers import SentenceTransformer, util
|
10 |
import requests
|
|
|
20 |
st.error("Dataset file not found. Please upload it to this directory.")
|
21 |
|
22 |
# Load DistilBERT Tokenizer and Model
|
23 |
+
# tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
|
24 |
+
# model = DistilBertForSequenceClassification.from_pretrained('distilbert-base-uncased')
|
25 |
+
|
26 |
+
# Load DistilBERT tokenizer and model (without classification layer)
|
27 |
+
tokenizer = DistilBertTokenizerFast.from_pretrained("distilbert-base-uncased")
|
28 |
+
model = DistilBertModel.from_pretrained("distilbert-base-uncased")
|
29 |
+
|
30 |
+
query = "What is fructose-1,6-bisphosphatase deficiency?"
|
31 |
+
|
32 |
+
# Tokenize input
|
33 |
+
inputs = tokenizer(query, return_tensors="pt", padding=True, truncation=True)
|
34 |
+
|
35 |
+
# Get model output (embeddings)
|
36 |
+
with torch.no_grad():
|
37 |
+
outputs = model(**inputs)
|
38 |
+
|
39 |
+
# Extract embeddings (last hidden state)
|
40 |
+
embeddings = outputs.last_hidden_state.mean(dim=1) # Averaging over token embeddings
|
41 |
+
|
42 |
+
# Use the embeddings for further processing or retrieval
|
43 |
+
print(embeddings)
|
44 |
+
|
45 |
|
46 |
# Preprocessing the dataset (if needed)
|
47 |
if 'combined_description' not in data.columns:
|