Lodor commited on
Commit
8e518b7
·
1 Parent(s): d94bdc5

Initial commit 2

Browse files
output/20220510-091500-045046-edited.jpg DELETED
Binary file (99.5 kB)
 
output/20220510-091500-045046.jpg DELETED
Binary file (17.8 kB)
 
output/20220510-091516-015613-edited.jpg DELETED
Binary file (99.5 kB)
 
output/20220510-091516-015613.jpg DELETED
Binary file (17.8 kB)
 
output/20220510-091521-541657-edited.jpg DELETED
Binary file (99.5 kB)
 
output/20220510-091521-541657.jpg DELETED
Binary file (17.8 kB)
 
output/20220510-154433-175611-edited.jpg DELETED
Binary file (41.7 kB)
 
output/20220510-154433-175611.jpg DELETED
Binary file (10 kB)
 
output/20220510-154448-010789-edited.jpg DELETED
Binary file (55.8 kB)
 
output/20220510-154448-010789.jpg DELETED
Binary file (10 kB)
 
output/20220510-154459-357457-edited.jpg DELETED
Binary file (84 kB)
 
output/20220510-154459-357457.jpg DELETED
Binary file (76.1 kB)
 
output/20220510-154525-151377-edited.jpg DELETED
Binary file (50.2 kB)
 
output/20220510-154525-151377.jpg DELETED
Binary file (12.3 kB)
 
output/20220510-155557-047130-edited.jpg DELETED
Binary file (720 kB)
 
output/20220510-155557-047130.jpg DELETED
Binary file (621 kB)
 
output/20220510-155659-820061-edited.jpg DELETED
Binary file (99.2 kB)
 
output/20220510-155659-820061.jpg DELETED
Binary file (17.8 kB)
 
output/20220510-160930-702819-edited.jpg DELETED
Binary file (99.2 kB)
 
output/20220510-160930-702819.jpg DELETED
Binary file (17.8 kB)
 
output/20220510-161047-602957-edited.jpg DELETED
Binary file (35.3 kB)
 
output/20220510-161047-602957.jpg DELETED
Binary file (35.3 kB)
 
output/20220510-161107-587096-edited.jpg DELETED
Binary file (99.2 kB)
 
output/20220510-161107-587096.jpg DELETED
Binary file (17.8 kB)
 
src/models/__init__.py DELETED
File without changes
src/models/backbones/__init__.py DELETED
@@ -1,10 +0,0 @@
1
- from .wrapper import *
2
-
3
-
4
- #------------------------------------------------------------------------------
5
- # Replaceable Backbones
6
- #------------------------------------------------------------------------------
7
-
8
- SUPPORTED_BACKBONES = {
9
- 'mobilenetv2': MobileNetV2Backbone,
10
- }
 
 
 
 
 
 
 
 
 
 
 
src/models/backbones/mobilenetv2.py DELETED
@@ -1,199 +0,0 @@
1
- """ This file is adapted from https://github.com/thuyngch/Human-Segmentation-PyTorch"""
2
-
3
- import math
4
- import json
5
- from functools import reduce
6
-
7
- import torch
8
- from torch import nn
9
-
10
-
11
- #------------------------------------------------------------------------------
12
- # Useful functions
13
- #------------------------------------------------------------------------------
14
-
15
- def _make_divisible(v, divisor, min_value=None):
16
- if min_value is None:
17
- min_value = divisor
18
- new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
19
- # Make sure that round down does not go down by more than 10%.
20
- if new_v < 0.9 * v:
21
- new_v += divisor
22
- return new_v
23
-
24
-
25
- def conv_bn(inp, oup, stride):
26
- return nn.Sequential(
27
- nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
28
- nn.BatchNorm2d(oup),
29
- nn.ReLU6(inplace=True)
30
- )
31
-
32
-
33
- def conv_1x1_bn(inp, oup):
34
- return nn.Sequential(
35
- nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
36
- nn.BatchNorm2d(oup),
37
- nn.ReLU6(inplace=True)
38
- )
39
-
40
-
41
- #------------------------------------------------------------------------------
42
- # Class of Inverted Residual block
43
- #------------------------------------------------------------------------------
44
-
45
- class InvertedResidual(nn.Module):
46
- def __init__(self, inp, oup, stride, expansion, dilation=1):
47
- super(InvertedResidual, self).__init__()
48
- self.stride = stride
49
- assert stride in [1, 2]
50
-
51
- hidden_dim = round(inp * expansion)
52
- self.use_res_connect = self.stride == 1 and inp == oup
53
-
54
- if expansion == 1:
55
- self.conv = nn.Sequential(
56
- # dw
57
- nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, dilation=dilation, bias=False),
58
- nn.BatchNorm2d(hidden_dim),
59
- nn.ReLU6(inplace=True),
60
- # pw-linear
61
- nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
62
- nn.BatchNorm2d(oup),
63
- )
64
- else:
65
- self.conv = nn.Sequential(
66
- # pw
67
- nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False),
68
- nn.BatchNorm2d(hidden_dim),
69
- nn.ReLU6(inplace=True),
70
- # dw
71
- nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, dilation=dilation, bias=False),
72
- nn.BatchNorm2d(hidden_dim),
73
- nn.ReLU6(inplace=True),
74
- # pw-linear
75
- nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
76
- nn.BatchNorm2d(oup),
77
- )
78
-
79
- def forward(self, x):
80
- if self.use_res_connect:
81
- return x + self.conv(x)
82
- else:
83
- return self.conv(x)
84
-
85
-
86
- #------------------------------------------------------------------------------
87
- # Class of MobileNetV2
88
- #------------------------------------------------------------------------------
89
-
90
- class MobileNetV2(nn.Module):
91
- def __init__(self, in_channels, alpha=1.0, expansion=6, num_classes=1000):
92
- super(MobileNetV2, self).__init__()
93
- self.in_channels = in_channels
94
- self.num_classes = num_classes
95
- input_channel = 32
96
- last_channel = 1280
97
- interverted_residual_setting = [
98
- # t, c, n, s
99
- [1 , 16, 1, 1],
100
- [expansion, 24, 2, 2],
101
- [expansion, 32, 3, 2],
102
- [expansion, 64, 4, 2],
103
- [expansion, 96, 3, 1],
104
- [expansion, 160, 3, 2],
105
- [expansion, 320, 1, 1],
106
- ]
107
-
108
- # building first layer
109
- input_channel = _make_divisible(input_channel*alpha, 8)
110
- self.last_channel = _make_divisible(last_channel*alpha, 8) if alpha > 1.0 else last_channel
111
- self.features = [conv_bn(self.in_channels, input_channel, 2)]
112
-
113
- # building inverted residual blocks
114
- for t, c, n, s in interverted_residual_setting:
115
- output_channel = _make_divisible(int(c*alpha), 8)
116
- for i in range(n):
117
- if i == 0:
118
- self.features.append(InvertedResidual(input_channel, output_channel, s, expansion=t))
119
- else:
120
- self.features.append(InvertedResidual(input_channel, output_channel, 1, expansion=t))
121
- input_channel = output_channel
122
-
123
- # building last several layers
124
- self.features.append(conv_1x1_bn(input_channel, self.last_channel))
125
-
126
- # make it nn.Sequential
127
- self.features = nn.Sequential(*self.features)
128
-
129
- # building classifier
130
- if self.num_classes is not None:
131
- self.classifier = nn.Sequential(
132
- nn.Dropout(0.2),
133
- nn.Linear(self.last_channel, num_classes),
134
- )
135
-
136
- # Initialize weights
137
- self._init_weights()
138
-
139
- def forward(self, x):
140
- # Stage1
141
- x = self.features[0](x)
142
- x = self.features[1](x)
143
- # Stage2
144
- x = self.features[2](x)
145
- x = self.features[3](x)
146
- # Stage3
147
- x = self.features[4](x)
148
- x = self.features[5](x)
149
- x = self.features[6](x)
150
- # Stage4
151
- x = self.features[7](x)
152
- x = self.features[8](x)
153
- x = self.features[9](x)
154
- x = self.features[10](x)
155
- x = self.features[11](x)
156
- x = self.features[12](x)
157
- x = self.features[13](x)
158
- # Stage5
159
- x = self.features[14](x)
160
- x = self.features[15](x)
161
- x = self.features[16](x)
162
- x = self.features[17](x)
163
- x = self.features[18](x)
164
-
165
- # Classification
166
- if self.num_classes is not None:
167
- x = x.mean(dim=(2,3))
168
- x = self.classifier(x)
169
-
170
- # Output
171
- return x
172
-
173
- def _load_pretrained_model(self, pretrained_file):
174
- pretrain_dict = torch.load(pretrained_file, map_location='cpu')
175
- model_dict = {}
176
- state_dict = self.state_dict()
177
- print("[MobileNetV2] Loading pretrained model...")
178
- for k, v in pretrain_dict.items():
179
- if k in state_dict:
180
- model_dict[k] = v
181
- else:
182
- print(k, "is ignored")
183
- state_dict.update(model_dict)
184
- self.load_state_dict(state_dict)
185
-
186
- def _init_weights(self):
187
- for m in self.modules():
188
- if isinstance(m, nn.Conv2d):
189
- n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
190
- m.weight.data.normal_(0, math.sqrt(2. / n))
191
- if m.bias is not None:
192
- m.bias.data.zero_()
193
- elif isinstance(m, nn.BatchNorm2d):
194
- m.weight.data.fill_(1)
195
- m.bias.data.zero_()
196
- elif isinstance(m, nn.Linear):
197
- n = m.weight.size(1)
198
- m.weight.data.normal_(0, 0.01)
199
- m.bias.data.zero_()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/models/backbones/wrapper.py DELETED
@@ -1,82 +0,0 @@
1
- import os
2
- from functools import reduce
3
-
4
- import torch
5
- import torch.nn as nn
6
-
7
- from .mobilenetv2 import MobileNetV2
8
-
9
-
10
- class BaseBackbone(nn.Module):
11
- """ Superclass of Replaceable Backbone Model for Semantic Estimation
12
- """
13
-
14
- def __init__(self, in_channels):
15
- super(BaseBackbone, self).__init__()
16
- self.in_channels = in_channels
17
-
18
- self.model = None
19
- self.enc_channels = []
20
-
21
- def forward(self, x):
22
- raise NotImplementedError
23
-
24
- def load_pretrained_ckpt(self):
25
- raise NotImplementedError
26
-
27
-
28
- class MobileNetV2Backbone(BaseBackbone):
29
- """ MobileNetV2 Backbone
30
- """
31
-
32
- def __init__(self, in_channels):
33
- super(MobileNetV2Backbone, self).__init__(in_channels)
34
-
35
- self.model = MobileNetV2(self.in_channels, alpha=1.0, expansion=6, num_classes=None)
36
- self.enc_channels = [16, 24, 32, 96, 1280]
37
-
38
- def forward(self, x):
39
- # x = reduce(lambda x, n: self.model.features[n](x), list(range(0, 2)), x)
40
- x = self.model.features[0](x)
41
- x = self.model.features[1](x)
42
- enc2x = x
43
-
44
- # x = reduce(lambda x, n: self.model.features[n](x), list(range(2, 4)), x)
45
- x = self.model.features[2](x)
46
- x = self.model.features[3](x)
47
- enc4x = x
48
-
49
- # x = reduce(lambda x, n: self.model.features[n](x), list(range(4, 7)), x)
50
- x = self.model.features[4](x)
51
- x = self.model.features[5](x)
52
- x = self.model.features[6](x)
53
- enc8x = x
54
-
55
- # x = reduce(lambda x, n: self.model.features[n](x), list(range(7, 14)), x)
56
- x = self.model.features[7](x)
57
- x = self.model.features[8](x)
58
- x = self.model.features[9](x)
59
- x = self.model.features[10](x)
60
- x = self.model.features[11](x)
61
- x = self.model.features[12](x)
62
- x = self.model.features[13](x)
63
- enc16x = x
64
-
65
- # x = reduce(lambda x, n: self.model.features[n](x), list(range(14, 19)), x)
66
- x = self.model.features[14](x)
67
- x = self.model.features[15](x)
68
- x = self.model.features[16](x)
69
- x = self.model.features[17](x)
70
- x = self.model.features[18](x)
71
- enc32x = x
72
- return [enc2x, enc4x, enc8x, enc16x, enc32x]
73
-
74
- def load_pretrained_ckpt(self):
75
- # the pre-trained model is provided by https://github.com/thuyngch/Human-Segmentation-PyTorch
76
- ckpt_path = './pretrained/mobilenetv2_human_seg.ckpt'
77
- if not os.path.exists(ckpt_path):
78
- print('cannot find the pretrained mobilenetv2 backbone')
79
- exit()
80
-
81
- ckpt = torch.load(ckpt_path)
82
- self.model.load_state_dict(ckpt)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/models/modnet.py DELETED
@@ -1,255 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
- import torch.nn.functional as F
4
-
5
- from .backbones import SUPPORTED_BACKBONES
6
-
7
-
8
- #------------------------------------------------------------------------------
9
- # MODNet Basic Modules
10
- #------------------------------------------------------------------------------
11
-
12
- class IBNorm(nn.Module):
13
- """ Combine Instance Norm and Batch Norm into One Layer
14
- """
15
-
16
- def __init__(self, in_channels):
17
- super(IBNorm, self).__init__()
18
- in_channels = in_channels
19
- self.bnorm_channels = int(in_channels / 2)
20
- self.inorm_channels = in_channels - self.bnorm_channels
21
-
22
- self.bnorm = nn.BatchNorm2d(self.bnorm_channels, affine=True)
23
- self.inorm = nn.InstanceNorm2d(self.inorm_channels, affine=False)
24
-
25
- def forward(self, x):
26
- bn_x = self.bnorm(x[:, :self.bnorm_channels, ...].contiguous())
27
- in_x = self.inorm(x[:, self.bnorm_channels:, ...].contiguous())
28
-
29
- return torch.cat((bn_x, in_x), 1)
30
-
31
-
32
- class Conv2dIBNormRelu(nn.Module):
33
- """ Convolution + IBNorm + ReLu
34
- """
35
-
36
- def __init__(self, in_channels, out_channels, kernel_size,
37
- stride=1, padding=0, dilation=1, groups=1, bias=True,
38
- with_ibn=True, with_relu=True):
39
- super(Conv2dIBNormRelu, self).__init__()
40
-
41
- layers = [
42
- nn.Conv2d(in_channels, out_channels, kernel_size,
43
- stride=stride, padding=padding, dilation=dilation,
44
- groups=groups, bias=bias)
45
- ]
46
-
47
- if with_ibn:
48
- layers.append(IBNorm(out_channels))
49
- if with_relu:
50
- layers.append(nn.ReLU(inplace=True))
51
-
52
- self.layers = nn.Sequential(*layers)
53
-
54
- def forward(self, x):
55
- return self.layers(x)
56
-
57
-
58
- class SEBlock(nn.Module):
59
- """ SE Block Proposed in https://arxiv.org/pdf/1709.01507.pdf
60
- """
61
-
62
- def __init__(self, in_channels, out_channels, reduction=1):
63
- super(SEBlock, self).__init__()
64
- self.pool = nn.AdaptiveAvgPool2d(1)
65
- self.fc = nn.Sequential(
66
- nn.Linear(in_channels, int(in_channels // reduction), bias=False),
67
- nn.ReLU(inplace=True),
68
- nn.Linear(int(in_channels // reduction), out_channels, bias=False),
69
- nn.Sigmoid()
70
- )
71
-
72
- def forward(self, x):
73
- b, c, _, _ = x.size()
74
- w = self.pool(x).view(b, c)
75
- w = self.fc(w).view(b, c, 1, 1)
76
-
77
- return x * w.expand_as(x)
78
-
79
-
80
- #------------------------------------------------------------------------------
81
- # MODNet Branches
82
- #------------------------------------------------------------------------------
83
-
84
- class LRBranch(nn.Module):
85
- """ Low Resolution Branch of MODNet
86
- """
87
-
88
- def __init__(self, backbone):
89
- super(LRBranch, self).__init__()
90
-
91
- enc_channels = backbone.enc_channels
92
-
93
- self.backbone = backbone
94
- self.se_block = SEBlock(enc_channels[4], enc_channels[4], reduction=4)
95
- self.conv_lr16x = Conv2dIBNormRelu(enc_channels[4], enc_channels[3], 5, stride=1, padding=2)
96
- self.conv_lr8x = Conv2dIBNormRelu(enc_channels[3], enc_channels[2], 5, stride=1, padding=2)
97
- self.conv_lr = Conv2dIBNormRelu(enc_channels[2], 1, kernel_size=3, stride=2, padding=1, with_ibn=False, with_relu=False)
98
-
99
- def forward(self, img, inference):
100
- enc_features = self.backbone.forward(img)
101
- enc2x, enc4x, enc32x = enc_features[0], enc_features[1], enc_features[4]
102
-
103
- enc32x = self.se_block(enc32x)
104
- lr16x = F.interpolate(enc32x, scale_factor=2, mode='bilinear', align_corners=False)
105
- lr16x = self.conv_lr16x(lr16x)
106
- lr8x = F.interpolate(lr16x, scale_factor=2, mode='bilinear', align_corners=False)
107
- lr8x = self.conv_lr8x(lr8x)
108
-
109
- pred_semantic = None
110
- if not inference:
111
- lr = self.conv_lr(lr8x)
112
- pred_semantic = torch.sigmoid(lr)
113
-
114
- return pred_semantic, lr8x, [enc2x, enc4x]
115
-
116
-
117
- class HRBranch(nn.Module):
118
- """ High Resolution Branch of MODNet
119
- """
120
-
121
- def __init__(self, hr_channels, enc_channels):
122
- super(HRBranch, self).__init__()
123
-
124
- self.tohr_enc2x = Conv2dIBNormRelu(enc_channels[0], hr_channels, 1, stride=1, padding=0)
125
- self.conv_enc2x = Conv2dIBNormRelu(hr_channels + 3, hr_channels, 3, stride=2, padding=1)
126
-
127
- self.tohr_enc4x = Conv2dIBNormRelu(enc_channels[1], hr_channels, 1, stride=1, padding=0)
128
- self.conv_enc4x = Conv2dIBNormRelu(2 * hr_channels, 2 * hr_channels, 3, stride=1, padding=1)
129
-
130
- self.conv_hr4x = nn.Sequential(
131
- Conv2dIBNormRelu(3 * hr_channels + 3, 2 * hr_channels, 3, stride=1, padding=1),
132
- Conv2dIBNormRelu(2 * hr_channels, 2 * hr_channels, 3, stride=1, padding=1),
133
- Conv2dIBNormRelu(2 * hr_channels, hr_channels, 3, stride=1, padding=1),
134
- )
135
-
136
- self.conv_hr2x = nn.Sequential(
137
- Conv2dIBNormRelu(2 * hr_channels, 2 * hr_channels, 3, stride=1, padding=1),
138
- Conv2dIBNormRelu(2 * hr_channels, hr_channels, 3, stride=1, padding=1),
139
- Conv2dIBNormRelu(hr_channels, hr_channels, 3, stride=1, padding=1),
140
- Conv2dIBNormRelu(hr_channels, hr_channels, 3, stride=1, padding=1),
141
- )
142
-
143
- self.conv_hr = nn.Sequential(
144
- Conv2dIBNormRelu(hr_channels + 3, hr_channels, 3, stride=1, padding=1),
145
- Conv2dIBNormRelu(hr_channels, 1, kernel_size=1, stride=1, padding=0, with_ibn=False, with_relu=False),
146
- )
147
-
148
- def forward(self, img, enc2x, enc4x, lr8x, inference):
149
- img2x = F.interpolate(img, scale_factor=1/2, mode='bilinear', align_corners=False)
150
- img4x = F.interpolate(img, scale_factor=1/4, mode='bilinear', align_corners=False)
151
-
152
- enc2x = self.tohr_enc2x(enc2x)
153
- hr4x = self.conv_enc2x(torch.cat((img2x, enc2x), dim=1))
154
-
155
- enc4x = self.tohr_enc4x(enc4x)
156
- hr4x = self.conv_enc4x(torch.cat((hr4x, enc4x), dim=1))
157
-
158
- lr4x = F.interpolate(lr8x, scale_factor=2, mode='bilinear', align_corners=False)
159
- hr4x = self.conv_hr4x(torch.cat((hr4x, lr4x, img4x), dim=1))
160
-
161
- hr2x = F.interpolate(hr4x, scale_factor=2, mode='bilinear', align_corners=False)
162
- hr2x = self.conv_hr2x(torch.cat((hr2x, enc2x), dim=1))
163
-
164
- pred_detail = None
165
- if not inference:
166
- hr = F.interpolate(hr2x, scale_factor=2, mode='bilinear', align_corners=False)
167
- hr = self.conv_hr(torch.cat((hr, img), dim=1))
168
- pred_detail = torch.sigmoid(hr)
169
-
170
- return pred_detail, hr2x
171
-
172
-
173
- class FusionBranch(nn.Module):
174
- """ Fusion Branch of MODNet
175
- """
176
-
177
- def __init__(self, hr_channels, enc_channels):
178
- super(FusionBranch, self).__init__()
179
- self.conv_lr4x = Conv2dIBNormRelu(enc_channels[2], hr_channels, 5, stride=1, padding=2)
180
-
181
- self.conv_f2x = Conv2dIBNormRelu(2 * hr_channels, hr_channels, 3, stride=1, padding=1)
182
- self.conv_f = nn.Sequential(
183
- Conv2dIBNormRelu(hr_channels + 3, int(hr_channels / 2), 3, stride=1, padding=1),
184
- Conv2dIBNormRelu(int(hr_channels / 2), 1, 1, stride=1, padding=0, with_ibn=False, with_relu=False),
185
- )
186
-
187
- def forward(self, img, lr8x, hr2x):
188
- lr4x = F.interpolate(lr8x, scale_factor=2, mode='bilinear', align_corners=False)
189
- lr4x = self.conv_lr4x(lr4x)
190
- lr2x = F.interpolate(lr4x, scale_factor=2, mode='bilinear', align_corners=False)
191
-
192
- f2x = self.conv_f2x(torch.cat((lr2x, hr2x), dim=1))
193
- f = F.interpolate(f2x, scale_factor=2, mode='bilinear', align_corners=False)
194
- f = self.conv_f(torch.cat((f, img), dim=1))
195
- pred_matte = torch.sigmoid(f)
196
-
197
- return pred_matte
198
-
199
-
200
- #------------------------------------------------------------------------------
201
- # MODNet
202
- #------------------------------------------------------------------------------
203
-
204
- class MODNet(nn.Module):
205
- """ Architecture of MODNet
206
- """
207
-
208
- def __init__(self, in_channels=3, hr_channels=32, backbone_arch='mobilenetv2', backbone_pretrained=True):
209
- super(MODNet, self).__init__()
210
-
211
- self.in_channels = in_channels
212
- self.hr_channels = hr_channels
213
- self.backbone_arch = backbone_arch
214
- self.backbone_pretrained = backbone_pretrained
215
-
216
- self.backbone = SUPPORTED_BACKBONES[self.backbone_arch](self.in_channels)
217
-
218
- self.lr_branch = LRBranch(self.backbone)
219
- self.hr_branch = HRBranch(self.hr_channels, self.backbone.enc_channels)
220
- self.f_branch = FusionBranch(self.hr_channels, self.backbone.enc_channels)
221
-
222
- for m in self.modules():
223
- if isinstance(m, nn.Conv2d):
224
- self._init_conv(m)
225
- elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.InstanceNorm2d):
226
- self._init_norm(m)
227
-
228
- if self.backbone_pretrained:
229
- self.backbone.load_pretrained_ckpt()
230
-
231
- def forward(self, img, inference):
232
- pred_semantic, lr8x, [enc2x, enc4x] = self.lr_branch(img, inference)
233
- pred_detail, hr2x = self.hr_branch(img, enc2x, enc4x, lr8x, inference)
234
- pred_matte = self.f_branch(img, lr8x, hr2x)
235
-
236
- return pred_semantic, pred_detail, pred_matte
237
-
238
- def freeze_norm(self):
239
- norm_types = [nn.BatchNorm2d, nn.InstanceNorm2d]
240
- for m in self.modules():
241
- for n in norm_types:
242
- if isinstance(m, n):
243
- m.eval()
244
- continue
245
-
246
- def _init_conv(self, conv):
247
- nn.init.kaiming_uniform_(
248
- conv.weight, a=0, mode='fan_in', nonlinearity='relu')
249
- if conv.bias is not None:
250
- nn.init.constant_(conv.bias, 0)
251
-
252
- def _init_norm(self, norm):
253
- if norm.weight is not None:
254
- nn.init.constant_(norm.weight, 1)
255
- nn.init.constant_(norm.bias, 0)