Food_Classifier / app.py
arvindsharmaphd7's picture
Update app.py
3bb81c1 verified
# -*- coding: utf-8 -*-
"""app
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1l1CvBkbH9l4Acj95i78ccFHTGV9JVEGF
"""
import gradio as gr
from fastai.vision.all import *
import skimage
# Load your model
learn = load_learner('export2.pkl')
labels = learn.dls.vocab
# Define your prediction function
def predict(img):
img = PILImage.create(img)
pred, pred_idx, probs = learn.predict(img)
return {labels[i]: float(probs[i]) for i in range(len(labels))}
# Gradio interface setup
title = "Food Type Classifier"
description = "A food classifier trained on the food images dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces."
article = "<p style='text-align: center'><a href='https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial' target='_blank'>Blog post</a></p>"
examples = ['Food.jpg']
interpretation = 'default'
enable_queue = True
# Update the Interface setup to use the new syntax
gr.Interface(
fn=predict,
inputs=gr.Image(), # Updated line - remove the shape parameter
outputs=gr.Label(num_top_classes=2),
title=title,
description=description,
article=article,
examples=examples,
interpretation=interpretation,
enable_queue=enable_queue
).launch()