Spaces:
Runtime error
Runtime error
artyomboyko
commited on
Commit
•
15b2ace
1
Parent(s):
64bd1cd
Update app.py
Browse filesTrying the French translation.
app.py
CHANGED
@@ -3,46 +3,35 @@ import numpy as np
|
|
3 |
import torch
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
-
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
|
7 |
-
|
8 |
-
from transliterate import translit
|
9 |
|
10 |
|
11 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
12 |
|
13 |
-
#
|
14 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
15 |
-
translate_pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-en-ru")
|
16 |
-
|
17 |
-
# Загрузим контрольную точку преобразования текста в речь и эбеддинги дикторов
|
18 |
-
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
19 |
-
|
20 |
-
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
21 |
-
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
22 |
|
23 |
-
|
24 |
-
|
|
|
25 |
|
26 |
|
27 |
def translate(audio):
|
28 |
-
|
29 |
-
|
30 |
-
result = translit(translation[0]['translation_text'], "ru", reversed=True)
|
31 |
-
print(result)
|
32 |
-
return result
|
33 |
|
34 |
|
35 |
def synthesise(text):
|
36 |
-
|
37 |
-
|
38 |
-
speech =
|
39 |
return speech.cpu()
|
40 |
|
41 |
|
42 |
def speech_to_speech_translation(audio):
|
43 |
translated_text = translate(audio)
|
44 |
synthesised_speech = synthesise(translated_text)
|
45 |
-
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
46 |
return 16000, synthesised_speech
|
47 |
|
48 |
|
|
|
3 |
import torch
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
+
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline, VitsModel, VitsTokenizer
|
|
|
|
|
7 |
|
8 |
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
+
# load speech translation checkpoint
|
12 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
# load text-to-speech checkpoint and speaker embeddings
|
15 |
+
model = VitsModel.from_pretrained("Matthijs/mms-tts-fra")
|
16 |
+
tokenizer = VitsTokenizer.from_pretrained("Matthijs/mms-tts-fra")
|
17 |
|
18 |
|
19 |
def translate(audio):
|
20 |
+
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "french"})
|
21 |
+
return outputs["text"]
|
|
|
|
|
|
|
22 |
|
23 |
|
24 |
def synthesise(text):
|
25 |
+
inputs = tokenizer(text=text, return_tensors="pt")
|
26 |
+
speech_output = model(inputs["input_ids"].to(device))
|
27 |
+
speech = speech_output.audio[0]
|
28 |
return speech.cpu()
|
29 |
|
30 |
|
31 |
def speech_to_speech_translation(audio):
|
32 |
translated_text = translate(audio)
|
33 |
synthesised_speech = synthesise(translated_text)
|
34 |
+
synthesised_speech = (synthesised_speech.detach().numpy() * 32767).astype(np.int16)
|
35 |
return 16000, synthesised_speech
|
36 |
|
37 |
|