artyomboyko commited on
Commit
15b2ace
1 Parent(s): 64bd1cd

Update app.py

Browse files

Trying the French translation.

Files changed (1) hide show
  1. app.py +11 -22
app.py CHANGED
@@ -3,46 +3,35 @@ import numpy as np
3
  import torch
4
  from datasets import load_dataset
5
 
6
- from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
-
8
- from transliterate import translit
9
 
10
 
11
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
12
 
13
- # загрузить контрольную точку модели транскибации и перевода речи
14
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
15
- translate_pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-en-ru")
16
-
17
- # Загрузим контрольную точку преобразования текста в речь и эбеддинги дикторов
18
- processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
19
-
20
- model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
21
- vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
22
 
23
- embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
24
- speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
 
25
 
26
 
27
  def translate(audio):
28
- transcription = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "english"})
29
- translation = translate_pipe(transcription["text"])
30
- result = translit(translation[0]['translation_text'], "ru", reversed=True)
31
- print(result)
32
- return result
33
 
34
 
35
  def synthesise(text):
36
- print(text)
37
- inputs = processor(text=text, return_tensors="pt")
38
- speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
39
  return speech.cpu()
40
 
41
 
42
  def speech_to_speech_translation(audio):
43
  translated_text = translate(audio)
44
  synthesised_speech = synthesise(translated_text)
45
- synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
46
  return 16000, synthesised_speech
47
 
48
 
 
3
  import torch
4
  from datasets import load_dataset
5
 
6
+ from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline, VitsModel, VitsTokenizer
 
 
7
 
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
 
11
+ # load speech translation checkpoint
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
 
 
 
 
 
 
 
13
 
14
+ # load text-to-speech checkpoint and speaker embeddings
15
+ model = VitsModel.from_pretrained("Matthijs/mms-tts-fra")
16
+ tokenizer = VitsTokenizer.from_pretrained("Matthijs/mms-tts-fra")
17
 
18
 
19
  def translate(audio):
20
+ outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "french"})
21
+ return outputs["text"]
 
 
 
22
 
23
 
24
  def synthesise(text):
25
+ inputs = tokenizer(text=text, return_tensors="pt")
26
+ speech_output = model(inputs["input_ids"].to(device))
27
+ speech = speech_output.audio[0]
28
  return speech.cpu()
29
 
30
 
31
  def speech_to_speech_translation(audio):
32
  translated_text = translate(audio)
33
  synthesised_speech = synthesise(translated_text)
34
+ synthesised_speech = (synthesised_speech.detach().numpy() * 32767).astype(np.int16)
35
  return 16000, synthesised_speech
36
 
37