artyomboyko commited on
Commit
9f16595
β€’
1 Parent(s): faad519

Upload 3 files

Browse files
Files changed (3) hide show
  1. app.py +151 -0
  2. packages.txt +1 -0
  3. requirements.txt +3 -0
app.py ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ import gradio as gr
4
+ import yt_dlp as youtube_dl
5
+ from transformers import pipeline
6
+ from transformers.pipelines.audio_utils import ffmpeg_read
7
+
8
+ import tempfile
9
+ import os
10
+
11
+ MODEL_NAME = "artyomboyko/whisper-small-fine_tuned-ru-v2"
12
+ BATCH_SIZE = 8
13
+ FILE_LIMIT_MB = 1000
14
+ YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
15
+
16
+ device = 0 if torch.cuda.is_available() else "cpu"
17
+
18
+ pipe = pipeline(
19
+ task="automatic-speech-recognition",
20
+ model=MODEL_NAME,
21
+ chunk_length_s=30,
22
+ device=device,
23
+ )
24
+
25
+
26
+ def transcribe(inputs, task):
27
+ if inputs is None:
28
+ raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
29
+
30
+ text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
31
+ return text
32
+
33
+
34
+ def _return_yt_html_embed(yt_url):
35
+ video_id = yt_url.split("?v=")[-1]
36
+ HTML_str = (
37
+ f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
38
+ " </center>"
39
+ )
40
+ return HTML_str
41
+
42
+ def download_yt_audio(yt_url, filename):
43
+ info_loader = youtube_dl.YoutubeDL()
44
+
45
+ try:
46
+ info = info_loader.extract_info(yt_url, download=False)
47
+ except youtube_dl.utils.DownloadError as err:
48
+ raise gr.Error(str(err))
49
+
50
+ file_length = info["duration_string"]
51
+ file_h_m_s = file_length.split(":")
52
+ file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
53
+
54
+ if len(file_h_m_s) == 1:
55
+ file_h_m_s.insert(0, 0)
56
+ if len(file_h_m_s) == 2:
57
+ file_h_m_s.insert(0, 0)
58
+ file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
59
+
60
+ if file_length_s > YT_LENGTH_LIMIT_S:
61
+ yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
62
+ file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
63
+ raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
64
+
65
+ ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
66
+
67
+ with youtube_dl.YoutubeDL(ydl_opts) as ydl:
68
+ try:
69
+ ydl.download([yt_url])
70
+ except youtube_dl.utils.ExtractorError as err:
71
+ raise gr.Error(str(err))
72
+
73
+
74
+ def yt_transcribe(yt_url, task, max_filesize=75.0):
75
+ html_embed_str = _return_yt_html_embed(yt_url)
76
+
77
+ with tempfile.TemporaryDirectory() as tmpdirname:
78
+ filepath = os.path.join(tmpdirname, "video.mp4")
79
+ download_yt_audio(yt_url, filepath)
80
+ with open(filepath, "rb") as f:
81
+ inputs = f.read()
82
+
83
+ inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
84
+ inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
85
+
86
+ text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
87
+
88
+ return html_embed_str, text
89
+
90
+
91
+ demo = gr.Blocks()
92
+
93
+ mf_transcribe = gr.Interface(
94
+ fn=transcribe,
95
+ inputs=[
96
+ gr.inputs.Audio(source="microphone", type="filepath", optional=True),
97
+ gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
98
+ ],
99
+ outputs="text",
100
+ layout="horizontal",
101
+ theme="huggingface",
102
+ title="Whisper Large V3: Transcribe Audio",
103
+ description=(
104
+ "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
105
+ f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and πŸ€— Transformers to transcribe audio files"
106
+ " of arbitrary length."
107
+ ),
108
+ allow_flagging="never",
109
+ )
110
+
111
+ file_transcribe = gr.Interface(
112
+ fn=transcribe,
113
+ inputs=[
114
+ gr.inputs.Audio(source="upload", type="filepath", optional=True, label="Audio file"),
115
+ gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
116
+ ],
117
+ outputs="text",
118
+ layout="horizontal",
119
+ theme="huggingface",
120
+ title="Whisper Large V3: Transcribe Audio",
121
+ description=(
122
+ "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
123
+ f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and πŸ€— Transformers to transcribe audio files"
124
+ " of arbitrary length."
125
+ ),
126
+ allow_flagging="never",
127
+ )
128
+
129
+ yt_transcribe = gr.Interface(
130
+ fn=yt_transcribe,
131
+ inputs=[
132
+ gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
133
+ gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe")
134
+ ],
135
+ outputs=["html", "text"],
136
+ layout="horizontal",
137
+ theme="huggingface",
138
+ title="Whisper Large V3: Transcribe YouTube",
139
+ description=(
140
+ "Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint"
141
+ f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and πŸ€— Transformers to transcribe video files of"
142
+ " arbitrary length."
143
+ ),
144
+ allow_flagging="never",
145
+ )
146
+
147
+ with demo:
148
+ gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
149
+
150
+ demo.launch(enable_queue=True)
151
+
packages.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ ffmpeg
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ git+https://github.com/huggingface/transformers
2
+ torch
3
+ yt-dlp