artush-habetyan commited on
Commit
2ab983c
·
1 Parent(s): 9a04ede

Final cleanup for HF Spaces deployment

Browse files

- Removed training artifacts (checkpoint, runs, docs) - saved 56MB
- Moved model to root ./model directory for cleaner structure
- Removed create_finetune_dataset.py (not needed for inference)
- Updated model path in code to ./model
- Final package: 139MB (was 195MB)
- Only essential files for HF Spaces inference

Files changed (29) hide show
  1. {training/yerevan-tinyllama-finetuned → model}/adapter_config.json +0 -0
  2. {training/yerevan-tinyllama-finetuned → model}/adapter_model.safetensors +0 -0
  3. {training/yerevan-tinyllama-finetuned → model}/chat_template.jinja +0 -0
  4. {training/yerevan-tinyllama-finetuned/checkpoint-492 → model}/special_tokens_map.json +0 -0
  5. {training/yerevan-tinyllama-finetuned/checkpoint-492 → model}/tokenizer.json +0 -0
  6. {training/yerevan-tinyllama-finetuned/checkpoint-492 → model}/tokenizer.model +0 -0
  7. {training/yerevan-tinyllama-finetuned/checkpoint-492 → model}/tokenizer_config.json +0 -0
  8. training/create_finetune_dataset.py +0 -315
  9. training/yerevan-tinyllama-finetuned/README.md +0 -202
  10. training/yerevan-tinyllama-finetuned/checkpoint-492/README.md +0 -202
  11. training/yerevan-tinyllama-finetuned/checkpoint-492/adapter_config.json +0 -3
  12. training/yerevan-tinyllama-finetuned/checkpoint-492/adapter_model.safetensors +0 -3
  13. training/yerevan-tinyllama-finetuned/checkpoint-492/chat_template.jinja +0 -15
  14. training/yerevan-tinyllama-finetuned/checkpoint-492/optimizer.pt +0 -3
  15. training/yerevan-tinyllama-finetuned/checkpoint-492/rng_state.pth +0 -0
  16. training/yerevan-tinyllama-finetuned/checkpoint-492/scaler.pt +0 -3
  17. training/yerevan-tinyllama-finetuned/checkpoint-492/scheduler.pt +0 -3
  18. training/yerevan-tinyllama-finetuned/checkpoint-492/trainer_state.json +0 -3
  19. training/yerevan-tinyllama-finetuned/checkpoint-492/training_args.bin +0 -3
  20. training/yerevan-tinyllama-finetuned/runs/Jun25_12-26-45_Katana-15-B13VGK/events.out.tfevents.1750840006.Katana-15-B13VGK.391264.0 +0 -0
  21. training/yerevan-tinyllama-finetuned/runs/Jun25_12-36-19_Katana-15-B13VGK/events.out.tfevents.1750840580.Katana-15-B13VGK.399115.0 +0 -0
  22. training/yerevan-tinyllama-finetuned/runs/Jun25_12-40-37_Katana-15-B13VGK/events.out.tfevents.1750840838.Katana-15-B13VGK.401809.0 +0 -0
  23. training/yerevan-tinyllama-finetuned/runs/Jun25_12-41-30_Katana-15-B13VGK/events.out.tfevents.1750840891.Katana-15-B13VGK.402333.0 +0 -0
  24. training/yerevan-tinyllama-finetuned/special_tokens_map.json +0 -3
  25. training/yerevan-tinyllama-finetuned/tokenizer.json +0 -3
  26. training/yerevan-tinyllama-finetuned/tokenizer.model +0 -3
  27. training/yerevan-tinyllama-finetuned/tokenizer_config.json +0 -3
  28. training/yerevan-tinyllama-finetuned/training_args.bin +0 -3
  29. venue_ai_with_finetuned.py +1 -1
{training/yerevan-tinyllama-finetuned → model}/adapter_config.json RENAMED
File without changes
{training/yerevan-tinyllama-finetuned → model}/adapter_model.safetensors RENAMED
File without changes
{training/yerevan-tinyllama-finetuned → model}/chat_template.jinja RENAMED
File without changes
{training/yerevan-tinyllama-finetuned/checkpoint-492 → model}/special_tokens_map.json RENAMED
File without changes
{training/yerevan-tinyllama-finetuned/checkpoint-492 → model}/tokenizer.json RENAMED
File without changes
{training/yerevan-tinyllama-finetuned/checkpoint-492 → model}/tokenizer.model RENAMED
File without changes
{training/yerevan-tinyllama-finetuned/checkpoint-492 → model}/tokenizer_config.json RENAMED
File without changes
training/create_finetune_dataset.py DELETED
@@ -1,315 +0,0 @@
1
- #!/usr/bin/env python3
2
- """
3
- Create Fine-tuning Dataset for TinyLlama - Yerevan Venue Specialist
4
- Combines JSON reviews + CSV summaries to create conversational training data
5
- """
6
-
7
- import json
8
- import pandas as pd
9
- import random
10
- from typing import List, Dict, Any
11
- import re
12
-
13
- class YerevanVenueDatasetCreator:
14
- def __init__(self, json_path: str, csv_path: str):
15
- self.json_path = json_path
16
- self.csv_path = csv_path
17
- self.venues_data = []
18
- self.structured_data = {}
19
- self.training_examples = []
20
-
21
- def load_data(self):
22
- """Load both JSON and CSV data"""
23
- print("Loading JSON venue data...")
24
- with open(self.json_path, 'r', encoding='utf-8') as f:
25
- self.venues_data = json.load(f)
26
-
27
- print("Loading CSV structured data...")
28
- df = pd.read_csv(self.csv_path)
29
- self.structured_data = {
30
- row['venue_name']: {
31
- 'category': row['category'],
32
- 'summary': row['venue_summary']
33
- }
34
- for _, row in df.iterrows()
35
- }
36
-
37
- print(f"Loaded {len(self.venues_data)} venues from JSON")
38
- print(f"Loaded {len(self.structured_data)} venues from CSV")
39
-
40
- def create_venue_qa_pairs(self, venue: Dict) -> List[Dict]:
41
- """Create Q&A pairs for a single venue"""
42
- examples = []
43
- name = venue['name']
44
-
45
- # Get structured summary if available
46
- summary = ""
47
- category = ""
48
- if name in self.structured_data:
49
- summary = self.structured_data[name]['summary']
50
- category = self.structured_data[name]['category']
51
-
52
- # Basic venue info questions
53
- if venue.get('rating'):
54
- examples.extend([
55
- {
56
- "instruction": f"What's the rating of {name} in Yerevan?",
57
- "input": "",
58
- "output": f"{name} has a rating of {venue['rating']}/5 stars based on {venue.get('total_ratings', 0)} reviews."
59
- },
60
- {
61
- "instruction": f"Tell me about {name}",
62
- "input": "",
63
- "output": f"{name} is a {category} in Yerevan with a {venue['rating']}/5 star rating. {summary[:200]}..."
64
- }
65
- ])
66
-
67
- # Location-based questions
68
- if venue.get('address'):
69
- examples.extend([
70
- {
71
- "instruction": f"Where is {name} located?",
72
- "input": "",
73
- "output": f"{name} is located at {venue['address']}."
74
- },
75
- {
76
- "instruction": f"What's the address of {name}?",
77
- "input": "",
78
- "output": f"You can find {name} at {venue['address']}."
79
- }
80
- ])
81
-
82
- # Category-based questions
83
- if category:
84
- examples.extend([
85
- {
86
- "instruction": f"What type of place is {name}?",
87
- "input": "",
88
- "output": f"{name} is a {category} in Yerevan. {summary[:150]}..."
89
- },
90
- {
91
- "instruction": f"Is {name} a good {category}?",
92
- "input": "",
93
- "output": f"Yes, {name} is a well-regarded {category} in Yerevan with a {venue.get('rating', 'good')} rating. {summary[:100]}..."
94
- }
95
- ])
96
-
97
- # Review-based questions
98
- if venue.get('reviews'):
99
- good_reviews = [r for r in venue['reviews'] if r['rating'] >= 4]
100
- bad_reviews = [r for r in venue['reviews'] if r['rating'] <= 2]
101
-
102
- if good_reviews:
103
- review = random.choice(good_reviews)
104
- examples.append({
105
- "instruction": f"What do people say about {name}?",
106
- "input": "",
107
- "output": f"Customers generally have positive things to say about {name}. One recent review mentioned: \"{review['text'][:200]}...\""
108
- })
109
-
110
- if bad_reviews:
111
- review = random.choice(bad_reviews)
112
- examples.append({
113
- "instruction": f"Are there any complaints about {name}?",
114
- "input": "",
115
- "output": f"Some customers have noted areas for improvement at {name}. One review mentioned: \"{review['text'][:200]}...\""
116
- })
117
-
118
- # Phone and contact info
119
- if venue.get('phone_number'):
120
- examples.append({
121
- "instruction": f"How can I contact {name}?",
122
- "input": "",
123
- "output": f"You can contact {name} at {venue['phone_number']}."
124
- })
125
-
126
- if venue.get('website'):
127
- examples.append({
128
- "instruction": f"Does {name} have a website?",
129
- "input": "",
130
- "output": f"Yes, you can visit {name}'s website at {venue['website']}"
131
- })
132
-
133
- return examples
134
-
135
- def create_general_queries(self) -> List[Dict]:
136
- """Create general Yerevan venue queries"""
137
- examples = []
138
-
139
- # Category-based recommendations
140
- categories = set(self.structured_data[venue]['category'] for venue in self.structured_data)
141
-
142
- for category in categories:
143
- venues_in_category = [
144
- name for name, data in self.structured_data.items()
145
- if data['category'] == category
146
- ]
147
-
148
- if len(venues_in_category) >= 3:
149
- top_venues = random.sample(venues_in_category, min(3, len(venues_in_category)))
150
- examples.extend([
151
- {
152
- "instruction": f"Recommend good {category}s in Yerevan",
153
- "input": "",
154
- "output": f"Here are some excellent {category}s in Yerevan: {', '.join(top_venues)}. Each offers unique experiences and high-quality service."
155
- },
156
- {
157
- "instruction": f"Where can I find a good {category} in Yerevan?",
158
- "input": "",
159
- "output": f"I'd recommend checking out {top_venues[0]} or {top_venues[1]}. Both are popular {category}s with great reviews."
160
- }
161
- ])
162
-
163
- # Location-based queries
164
- streets = set()
165
- for venue in self.venues_data:
166
- if venue.get('address'):
167
- # Extract street names
168
- address = venue['address']
169
- if 'Mashtots' in address:
170
- streets.add('Mashtots Avenue')
171
- elif 'Abovyan' in address:
172
- streets.add('Abovyan Street')
173
- elif 'Northern' in address:
174
- streets.add('Northern Avenue')
175
-
176
- for street in list(streets)[:5]: # Limit to top 5 streets
177
- street_venues = [
178
- venue['name'] for venue in self.venues_data
179
- if venue.get('address') and street.split()[0] in venue['address']
180
- ][:3]
181
-
182
- if street_venues:
183
- examples.append({
184
- "instruction": f"What venues are on {street}?",
185
- "input": "",
186
- "output": f"On {street}, you can find several great venues including {', '.join(street_venues)}."
187
- })
188
-
189
- # General conversation
190
- examples.extend([
191
- {
192
- "instruction": "Hello, can you help me find venues in Yerevan?",
193
- "input": "",
194
- "output": "Hello! I'd be happy to help you discover the best venues in Yerevan. I know about restaurants, bars, cafes, clubs, and more. What type of place are you looking for?"
195
- },
196
- {
197
- "instruction": "What do you know about Yerevan venues?",
198
- "input": "",
199
- "output": "I'm specialized in Yerevan's venue scene! I have detailed knowledge about hundreds of restaurants, bars, cafes, clubs, and other establishments across the city, including their locations, ratings, reviews, and what makes each special."
200
- },
201
- {
202
- "instruction": "I'm visiting Yerevan, where should I go?",
203
- "input": "",
204
- "output": "Welcome to Yerevan! The city has amazing venues to explore. For dining, try some local restaurants. For nightlife, there are great bars and clubs. What type of experience are you looking for?"
205
- }
206
- ])
207
-
208
- return examples
209
-
210
- def create_armenian_examples(self) -> List[Dict]:
211
- """Create Armenian language examples"""
212
- examples = []
213
-
214
- # Sample Armenian queries
215
- armenian_examples = [
216
- {
217
- "instruction": "Բարև, կարող ես օգնել գտնել լավ ռեստորան Երևանում?",
218
- "input": "",
219
- "output": "Բարև ձեզ! Իհարկե կարող եմ օգնել: Երևանում շատ լավ ռեստորաններ կան: Ինչ տեսակի ճաշարան եք փնտրում?"
220
- },
221
- {
222
- "instruction": "Որտեղ կարող եմ գտնել լավ բար Երևանում?",
223
- "input": "",
224
- "output": "Երևանում շատ հիանալի բարեր կան: Կարող եմ առաջարկել մի քանիսը՝ կախված ձեր նախապատվություններից:"
225
- },
226
- {
227
- "instruction": "Ինչ սրճարաններ կան Մաշտոցի մոտ?",
228
- "input": "",
229
- "output": "Մաշտոցի պողոտայի մոտ մի քանի հիանալի սրճարաններ կան: Կարող եմ խորհուրդ տալ լավագույններից մի քանիսը:"
230
- }
231
- ]
232
-
233
- return armenian_examples
234
-
235
- def generate_dataset(self) -> List[Dict]:
236
- """Generate complete fine-tuning dataset"""
237
- print("Creating venue-specific Q&A pairs...")
238
-
239
- # Process each venue
240
- for i, venue in enumerate(self.venues_data):
241
- if i % 100 == 0:
242
- print(f"Processed {i}/{len(self.venues_data)} venues...")
243
-
244
- venue_examples = self.create_venue_qa_pairs(venue)
245
- self.training_examples.extend(venue_examples)
246
-
247
- print("Creating general queries...")
248
- general_examples = self.create_general_queries()
249
- self.training_examples.extend(general_examples)
250
-
251
- print("Creating Armenian examples...")
252
- armenian_examples = self.create_armenian_examples()
253
- self.training_examples.extend(armenian_examples)
254
-
255
- print(f"Generated {len(self.training_examples)} training examples")
256
- return self.training_examples
257
-
258
- def save_dataset(self, output_path: str):
259
- """Save dataset in format suitable for fine-tuning"""
260
- print(f"Saving dataset to {output_path}...")
261
-
262
- with open(output_path, 'w', encoding='utf-8') as f:
263
- json.dump(self.training_examples, f, ensure_ascii=False, indent=2)
264
-
265
- print(f"Dataset saved with {len(self.training_examples)} examples")
266
-
267
- def save_alpaca_format(self, output_path: str):
268
- """Save in Alpaca instruction format for easier fine-tuning"""
269
- alpaca_data = []
270
-
271
- for example in self.training_examples:
272
- alpaca_data.append({
273
- "instruction": example["instruction"],
274
- "input": example["input"],
275
- "output": example["output"]
276
- })
277
-
278
- with open(output_path, 'w', encoding='utf-8') as f:
279
- json.dump(alpaca_data, f, ensure_ascii=False, indent=2)
280
-
281
- print(f"Alpaca format dataset saved to {output_path}")
282
-
283
- def main():
284
- # Create dataset
285
- creator = YerevanVenueDatasetCreator(
286
- json_path="yerevan_pubs_bars_20250623_193205.json",
287
- csv_path="yerevan_venues_structured.csv"
288
- )
289
-
290
- creator.load_data()
291
- dataset = creator.generate_dataset()
292
-
293
- # Save in multiple formats
294
- creator.save_dataset("yerevan_venues_finetune_dataset.json")
295
- creator.save_alpaca_format("yerevan_venues_alpaca_format.json")
296
-
297
- # Print statistics
298
- print("\n=== Dataset Statistics ===")
299
- print(f"Total training examples: {len(dataset)}")
300
-
301
- # Count by type
302
- venue_specific = sum(1 for ex in dataset if any(venue['name'] in ex['instruction'] for venue in creator.venues_data))
303
- general = len(dataset) - venue_specific
304
-
305
- print(f"Venue-specific examples: {venue_specific}")
306
- print(f"General examples: {general}")
307
-
308
- # Sample examples
309
- print("\n=== Sample Examples ===")
310
- for i, example in enumerate(random.sample(dataset, 3)):
311
- print(f"\n{i+1}. Q: {example['instruction']}")
312
- print(f" A: {example['output'][:150]}...")
313
-
314
- if __name__ == "__main__":
315
- main()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
training/yerevan-tinyllama-finetuned/README.md DELETED
@@ -1,202 +0,0 @@
1
- ---
2
- base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
3
- library_name: peft
4
- ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
-
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
- ### Framework versions
201
-
202
- - PEFT 0.15.2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
training/yerevan-tinyllama-finetuned/checkpoint-492/README.md DELETED
@@ -1,202 +0,0 @@
1
- ---
2
- base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
3
- library_name: peft
4
- ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
-
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
- ### Framework versions
201
-
202
- - PEFT 0.15.2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
training/yerevan-tinyllama-finetuned/checkpoint-492/adapter_config.json DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:a581efab12deff78fa12de8e0433cbe1acb9cb872bf26574673ac90fed1bc296
3
- size 817
 
 
 
 
training/yerevan-tinyllama-finetuned/checkpoint-492/adapter_model.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:cfad5ab9307d7ed313906071371ce655f8fc6dbbc8333b983a0e0fde4c790942
3
- size 18045856
 
 
 
 
training/yerevan-tinyllama-finetuned/checkpoint-492/chat_template.jinja DELETED
@@ -1,15 +0,0 @@
1
- {% for message in messages %}
2
- {% if message['role'] == 'user' %}
3
- {{ '<|user|>
4
- ' + message['content'] + eos_token }}
5
- {% elif message['role'] == 'system' %}
6
- {{ '<|system|>
7
- ' + message['content'] + eos_token }}
8
- {% elif message['role'] == 'assistant' %}
9
- {{ '<|assistant|>
10
- ' + message['content'] + eos_token }}
11
- {% endif %}
12
- {% if loop.last and add_generation_prompt %}
13
- {{ '<|assistant|>' }}
14
- {% endif %}
15
- {% endfor %}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
training/yerevan-tinyllama-finetuned/checkpoint-492/optimizer.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:1e9340ca40a642bb335c6c806b8dc57ae6cc87663445ec9e92c7d87ab24c10fe
3
- size 36193099
 
 
 
 
training/yerevan-tinyllama-finetuned/checkpoint-492/rng_state.pth DELETED
Binary file (14.6 kB)
 
training/yerevan-tinyllama-finetuned/checkpoint-492/scaler.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:edf646a96df16e08f63350c1f1b553952938bc5496d54c93a92e048555f4641d
3
- size 1383
 
 
 
 
training/yerevan-tinyllama-finetuned/checkpoint-492/scheduler.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:1754888a680bd157657620ccbd6aa62f939f06ba25f92306cd80f56605c1d549
3
- size 1465
 
 
 
 
training/yerevan-tinyllama-finetuned/checkpoint-492/trainer_state.json DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:51c4ed2eaebdb474f0a588f884dc20b550d34a819c9cff001bbaed81738526ad
3
- size 2299
 
 
 
 
training/yerevan-tinyllama-finetuned/checkpoint-492/training_args.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:a3d047ee82e54e9de01b803882bf5b8b97b6755d24a2b032074991d91d73a6a0
3
- size 5713
 
 
 
 
training/yerevan-tinyllama-finetuned/runs/Jun25_12-26-45_Katana-15-B13VGK/events.out.tfevents.1750840006.Katana-15-B13VGK.391264.0 DELETED
Binary file (5 kB)
 
training/yerevan-tinyllama-finetuned/runs/Jun25_12-36-19_Katana-15-B13VGK/events.out.tfevents.1750840580.Katana-15-B13VGK.399115.0 DELETED
Binary file (5 kB)
 
training/yerevan-tinyllama-finetuned/runs/Jun25_12-40-37_Katana-15-B13VGK/events.out.tfevents.1750840838.Katana-15-B13VGK.401809.0 DELETED
Binary file (5 kB)
 
training/yerevan-tinyllama-finetuned/runs/Jun25_12-41-30_Katana-15-B13VGK/events.out.tfevents.1750840891.Katana-15-B13VGK.402333.0 DELETED
Binary file (7.24 kB)
 
training/yerevan-tinyllama-finetuned/special_tokens_map.json DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:82d96d7a9e6ced037f12394b7ea6a5b02e6ca87e0d11edaa8d60d9be857ce7db
3
- size 551
 
 
 
 
training/yerevan-tinyllama-finetuned/tokenizer.json DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:b0694d8c7cff1e1d740a484932fcf3e36b80feb3beaa71e751cf7d70cdf2a17b
3
- size 3619280
 
 
 
 
training/yerevan-tinyllama-finetuned/tokenizer.model DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
- size 499723
 
 
 
 
training/yerevan-tinyllama-finetuned/tokenizer_config.json DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:27c5ddd03dd5e605959d3a0f6d4dcfc238e5475bbde941e8c358f3776ac1221b
3
- size 951
 
 
 
 
training/yerevan-tinyllama-finetuned/training_args.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:a3d047ee82e54e9de01b803882bf5b8b97b6755d24a2b032074991d91d73a6a0
3
- size 5713
 
 
 
 
venue_ai_with_finetuned.py CHANGED
@@ -31,7 +31,7 @@ class YerevanVenueAIWithFinetunedLLM:
31
  def __init__(self,
32
  venues_json_path: str = 'yerevan_pubs_bars_20250623_193205.json',
33
  venues_csv_path: str = 'yerevan_venues_structured.csv',
34
- model_path: str = './training/yerevan-tinyllama-finetuned'):
35
  """Initialize the venue AI system"""
36
  logger.info("Initialized YerevanVenueAI with fine-tuned LLM capabilities")
37
 
 
31
  def __init__(self,
32
  venues_json_path: str = 'yerevan_pubs_bars_20250623_193205.json',
33
  venues_csv_path: str = 'yerevan_venues_structured.csv',
34
+ model_path: str = './model'):
35
  """Initialize the venue AI system"""
36
  logger.info("Initialized YerevanVenueAI with fine-tuned LLM capabilities")
37