artificialguybr commited on
Commit
af6eab9
1 Parent(s): f704b6f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +51 -30
app.py CHANGED
@@ -6,22 +6,40 @@ import os, stat
6
  import uuid
7
  from googletrans import Translator
8
  from TTS.api import TTS
 
9
  from faster_whisper import WhisperModel
 
10
  import soundfile as sf
 
11
  import numpy as np
 
 
 
12
  import cv2
 
 
 
 
13
  from huggingface_hub import HfApi
14
- import shlex
15
 
 
16
  HF_TOKEN = os.environ.get("HF_TOKEN")
17
  os.environ["COQUI_TOS_AGREED"] = "1"
18
  api = HfApi(token=HF_TOKEN)
19
  repo_id = "artificialguybr/video-dubbing"
20
 
21
- # Whisper
 
 
 
 
 
22
  model_size = "small"
23
  model = WhisperModel(model_size, device="cpu", compute_type="int8")
24
 
 
 
 
25
  def check_for_faces(video_path):
26
  face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
27
  cap = cv2.VideoCapture(video_path)
@@ -39,6 +57,17 @@ def check_for_faces(video_path):
39
 
40
  return False
41
 
 
 
 
 
 
 
 
 
 
 
 
42
  @spaces.GPU
43
  def process_video(radio, video, target_language, has_closeup_face):
44
  if target_language is None:
@@ -46,37 +75,33 @@ def process_video(radio, video, target_language, has_closeup_face):
46
 
47
  run_uuid = uuid.uuid4().hex[:6]
48
  output_filename = f"{run_uuid}_resized_video.mp4"
49
-
50
- # Use subprocess for ffmpeg operations
51
- subprocess.run(["ffmpeg", "-i", video, "-vf", "scale=-2:720", output_filename])
52
 
53
  video_path = output_filename
54
 
55
  if not os.path.exists(video_path):
56
  return f"Error: {video_path} does not exist."
57
 
58
- # Check video duration
59
- video_info = subprocess.check_output(["ffprobe", "-v", "error", "-show_entries", "format=duration", "-of", "default=noprint_wrappers=1:nokey=1", video_path])
60
- video_duration = float(video_info)
61
 
62
  if video_duration > 60:
63
  os.remove(video_path)
64
  return gr.Error("Video duration exceeds 1 minute. Please upload a shorter video.")
65
 
66
- subprocess.run(["ffmpeg", "-i", video_path, "-acodec", "pcm_s24le", "-ar", "48000", "-map", "a", f"{run_uuid}_output_audio.wav"])
67
 
68
- subprocess.run(["ffmpeg", "-y", "-i", f"{run_uuid}_output_audio.wav", "-af", "lowpass=3000,highpass=100", f"{run_uuid}_output_audio_final.wav"])
 
69
 
70
  print("Attempting to transcribe with Whisper...")
71
  try:
72
- segments, info = model.transcribe(f"{run_uuid}_output_audio_final.wav", beam_size=5)
73
- whisper_text = " ".join(segment.text for segment in segments)
74
- whisper_language = info.language
75
  print(f"Transcription successful: {whisper_text}")
76
  except RuntimeError as e:
77
  print(f"RuntimeError encountered: {str(e)}")
78
  if "CUDA failed with error device-side assert triggered" in str(e):
79
- gr.Warning("Error. Space need to restart. Please retry in a minute")
80
  api.restart_space(repo_id=repo_id)
81
 
82
  language_mapping = {'English': 'en', 'Spanish': 'es', 'French': 'fr', 'German': 'de', 'Italian': 'it', 'Portuguese': 'pt', 'Polish': 'pl', 'Turkish': 'tr', 'Russian': 'ru', 'Dutch': 'nl', 'Czech': 'cs', 'Arabic': 'ar', 'Chinese (Simplified)': 'zh-cn'}
@@ -85,19 +110,20 @@ def process_video(radio, video, target_language, has_closeup_face):
85
  translated_text = translator.translate(whisper_text, src=whisper_language, dest=target_language_code).text
86
  print(translated_text)
87
 
88
- tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2")
89
- tts.tts_to_file(translated_text, speaker_wav=f"{run_uuid}_output_audio_final.wav", file_path=f"{run_uuid}_output_synth.wav", language=target_language_code)
90
 
91
  if has_closeup_face:
92
  try:
93
- cmd = f"python Wav2Lip/inference.py --checkpoint_path 'Wav2Lip/checkpoints/wav2lip_gan.pth' --face {shlex.quote(video_path)} --audio '{run_uuid}_output_synth.wav' --pads 0 15 0 0 --resize_factor 1 --nosmooth --outfile '{run_uuid}_output_video.mp4'"
94
  subprocess.run(cmd, shell=True, check=True)
95
  except subprocess.CalledProcessError as e:
96
  if "Face not detected! Ensure the video contains a face in all the frames." in str(e.stderr):
97
  gr.Warning("Wav2lip didn't detect a face. Please try again with the option disabled.")
98
- subprocess.run(["ffmpeg", "-i", video_path, "-i", f"{run_uuid}_output_synth.wav", "-c:v", "copy", "-c:a", "aac", "-strict", "experimental", "-map", "0:v:0", "-map", "1:a:0", f"{run_uuid}_output_video.mp4"])
 
99
  else:
100
- subprocess.run(["ffmpeg", "-i", video_path, "-i", f"{run_uuid}_output_synth.wav", "-c:v", "copy", "-c:a", "aac", "-strict", "experimental", "-map", "0:v:0", "-map", "1:a:0", f"{run_uuid}_output_video.mp4"])
 
101
 
102
  if not os.path.exists(f"{run_uuid}_output_video.mp4"):
103
  raise FileNotFoundError(f"Error: {run_uuid}_output_video.mp4 was not generated.")
@@ -109,7 +135,7 @@ def process_video(radio, video, target_language, has_closeup_face):
109
  f"{run_uuid}_resized_video.mp4",
110
  f"{run_uuid}_output_audio.wav",
111
  f"{run_uuid}_output_audio_final.wav",
112
- f"{run_uuid}_output_synth.wav"
113
  ]
114
  for file in files_to_delete:
115
  try:
@@ -120,11 +146,9 @@ def process_video(radio, video, target_language, has_closeup_face):
120
  return output_video_path
121
 
122
  def swap(radio):
123
- if(radio == "Upload"):
124
- return gr.update(source="upload")
125
- else:
126
- return gr.update(source="webcam")
127
-
128
  video = gr.Video()
129
  radio = gr.Radio(["Upload", "Record"], value="Upload", show_label=False)
130
  iface = gr.Interface(
@@ -133,10 +157,7 @@ iface = gr.Interface(
133
  radio,
134
  video,
135
  gr.Dropdown(choices=["English", "Spanish", "French", "German", "Italian", "Portuguese", "Polish", "Turkish", "Russian", "Dutch", "Czech", "Arabic", "Chinese (Simplified)"], label="Target Language for Dubbing", value="Spanish"),
136
- gr.Checkbox(
137
- label="Video has a close-up face. Use Wav2lip.",
138
- value=False,
139
- info="Say if video have close-up face. For Wav2lip. Will not work if checked wrongly.")
140
  ],
141
  outputs=gr.Video(),
142
  live=False,
@@ -159,5 +180,5 @@ with gr.Blocks() as demo:
159
  - If you incorrectly mark the 'Video has a close-up face' checkbox, the dubbing may not work as expected.
160
  """)
161
 
162
- demo.queue()
163
  demo.launch()
 
6
  import uuid
7
  from googletrans import Translator
8
  from TTS.api import TTS
9
+ import ffmpeg
10
  from faster_whisper import WhisperModel
11
+ from scipy.signal import wiener
12
  import soundfile as sf
13
+ from pydub import AudioSegment
14
  import numpy as np
15
+ import librosa
16
+ from zipfile import ZipFile
17
+ import shlex
18
  import cv2
19
+ import torch
20
+ import torchvision
21
+ from tqdm import tqdm
22
+ from numba import jit
23
  from huggingface_hub import HfApi
 
24
 
25
+ # Environment setup
26
  HF_TOKEN = os.environ.get("HF_TOKEN")
27
  os.environ["COQUI_TOS_AGREED"] = "1"
28
  api = HfApi(token=HF_TOKEN)
29
  repo_id = "artificialguybr/video-dubbing"
30
 
31
+ # Extract ffmpeg
32
+ ZipFile("ffmpeg.zip").extractall()
33
+ st = os.stat('ffmpeg')
34
+ os.chmod('ffmpeg', st.st_mode | stat.S_IEXEC)
35
+
36
+ # Initialize Whisper model
37
  model_size = "small"
38
  model = WhisperModel(model_size, device="cpu", compute_type="int8")
39
 
40
+ # Initialize TTS model
41
+ tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2")
42
+
43
  def check_for_faces(video_path):
44
  face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
45
  cap = cv2.VideoCapture(video_path)
 
57
 
58
  return False
59
 
60
+ @spaces.GPU
61
+ def transcribe_audio(audio_path):
62
+ segments, info = model.transcribe(audio_path, beam_size=5)
63
+ whisper_text = " ".join(segment.text for segment in segments)
64
+ whisper_language = info.language
65
+ return whisper_text, whisper_language
66
+
67
+ @spaces.GPU
68
+ def generate_tts(text, speaker_wav, language_code):
69
+ tts.tts_to_file(text, speaker_wav=speaker_wav, file_path="output_synth.wav", language=language_code)
70
+
71
  @spaces.GPU
72
  def process_video(radio, video, target_language, has_closeup_face):
73
  if target_language is None:
 
75
 
76
  run_uuid = uuid.uuid4().hex[:6]
77
  output_filename = f"{run_uuid}_resized_video.mp4"
78
+ ffmpeg.input(video).output(output_filename, vf='scale=-2:720').run()
 
 
79
 
80
  video_path = output_filename
81
 
82
  if not os.path.exists(video_path):
83
  return f"Error: {video_path} does not exist."
84
 
85
+ video_info = ffmpeg.probe(video_path)
86
+ video_duration = float(video_info['streams'][0]['duration'])
 
87
 
88
  if video_duration > 60:
89
  os.remove(video_path)
90
  return gr.Error("Video duration exceeds 1 minute. Please upload a shorter video.")
91
 
92
+ ffmpeg.input(video_path).output(f"{run_uuid}_output_audio.wav", acodec='pcm_s24le', ar=48000, map='a').run()
93
 
94
+ shell_command = f"ffmpeg -y -i {run_uuid}_output_audio.wav -af lowpass=3000,highpass=100 {run_uuid}_output_audio_final.wav".split(" ")
95
+ subprocess.run([item for item in shell_command], capture_output=False, text=True, check=True)
96
 
97
  print("Attempting to transcribe with Whisper...")
98
  try:
99
+ whisper_text, whisper_language = transcribe_audio(f"{run_uuid}_output_audio_final.wav")
 
 
100
  print(f"Transcription successful: {whisper_text}")
101
  except RuntimeError as e:
102
  print(f"RuntimeError encountered: {str(e)}")
103
  if "CUDA failed with error device-side assert triggered" in str(e):
104
+ gr.Warning("Error. Space needs to restart. Please retry in a minute")
105
  api.restart_space(repo_id=repo_id)
106
 
107
  language_mapping = {'English': 'en', 'Spanish': 'es', 'French': 'fr', 'German': 'de', 'Italian': 'it', 'Portuguese': 'pt', 'Polish': 'pl', 'Turkish': 'tr', 'Russian': 'ru', 'Dutch': 'nl', 'Czech': 'cs', 'Arabic': 'ar', 'Chinese (Simplified)': 'zh-cn'}
 
110
  translated_text = translator.translate(whisper_text, src=whisper_language, dest=target_language_code).text
111
  print(translated_text)
112
 
113
+ generate_tts(translated_text, f"{run_uuid}_output_audio_final.wav", target_language_code)
 
114
 
115
  if has_closeup_face:
116
  try:
117
+ cmd = f"python Wav2Lip/inference.py --checkpoint_path 'Wav2Lip/checkpoints/wav2lip_gan.pth' --face {shlex.quote(video_path)} --audio 'output_synth.wav' --pads 0 15 0 0 --resize_factor 1 --nosmooth --outfile '{run_uuid}_output_video.mp4'"
118
  subprocess.run(cmd, shell=True, check=True)
119
  except subprocess.CalledProcessError as e:
120
  if "Face not detected! Ensure the video contains a face in all the frames." in str(e.stderr):
121
  gr.Warning("Wav2lip didn't detect a face. Please try again with the option disabled.")
122
+ cmd = f"ffmpeg -i {video_path} -i output_synth.wav -c:v copy -c:a aac -strict experimental -map 0:v:0 -map 1:a:0 {run_uuid}_output_video.mp4"
123
+ subprocess.run(cmd, shell=True)
124
  else:
125
+ cmd = f"ffmpeg -i {video_path} -i output_synth.wav -c:v copy -c:a aac -strict experimental -map 0:v:0 -map 1:a:0 {run_uuid}_output_video.mp4"
126
+ subprocess.run(cmd, shell=True)
127
 
128
  if not os.path.exists(f"{run_uuid}_output_video.mp4"):
129
  raise FileNotFoundError(f"Error: {run_uuid}_output_video.mp4 was not generated.")
 
135
  f"{run_uuid}_resized_video.mp4",
136
  f"{run_uuid}_output_audio.wav",
137
  f"{run_uuid}_output_audio_final.wav",
138
+ "output_synth.wav"
139
  ]
140
  for file in files_to_delete:
141
  try:
 
146
  return output_video_path
147
 
148
  def swap(radio):
149
+ return gr.update(source="upload" if radio == "Upload" else "webcam")
150
+
151
+ # Gradio interface setup
 
 
152
  video = gr.Video()
153
  radio = gr.Radio(["Upload", "Record"], value="Upload", show_label=False)
154
  iface = gr.Interface(
 
157
  radio,
158
  video,
159
  gr.Dropdown(choices=["English", "Spanish", "French", "German", "Italian", "Portuguese", "Polish", "Turkish", "Russian", "Dutch", "Czech", "Arabic", "Chinese (Simplified)"], label="Target Language for Dubbing", value="Spanish"),
160
+ gr.Checkbox(label="Video has a close-up face. Use Wav2lip.", value=False, info="Say if video have close-up face. For Wav2lip. Will not work if checked wrongly.")
 
 
 
161
  ],
162
  outputs=gr.Video(),
163
  live=False,
 
180
  - If you incorrectly mark the 'Video has a close-up face' checkbox, the dubbing may not work as expected.
181
  """)
182
 
183
+ demo.queue(concurrency_count=1, max_size=15)
184
  demo.launch()