Spaces:
Running
on
Zero
Running
on
Zero
import copy | |
import os | |
import unittest | |
import torch | |
from torch import optim | |
from trainer.logging.tensorboard_logger import TensorboardLogger | |
from tests import get_tests_data_path, get_tests_input_path, get_tests_output_path | |
from TTS.tts.configs.glow_tts_config import GlowTTSConfig | |
from TTS.tts.layers.losses import GlowTTSLoss | |
from TTS.tts.models.glow_tts import GlowTTS | |
from TTS.tts.utils.speakers import SpeakerManager | |
from TTS.utils.audio import AudioProcessor | |
# pylint: disable=unused-variable | |
torch.manual_seed(1) | |
use_cuda = torch.cuda.is_available() | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
c = GlowTTSConfig() | |
ap = AudioProcessor(**c.audio) | |
WAV_FILE = os.path.join(get_tests_input_path(), "example_1.wav") | |
BATCH_SIZE = 3 | |
def count_parameters(model): | |
r"""Count number of trainable parameters in a network""" | |
return sum(p.numel() for p in model.parameters() if p.requires_grad) | |
class TestGlowTTS(unittest.TestCase): | |
def _create_inputs(batch_size=8): | |
input_dummy = torch.randint(0, 24, (batch_size, 128)).long().to(device) | |
input_lengths = torch.randint(100, 129, (batch_size,)).long().to(device) | |
input_lengths[-1] = 128 | |
mel_spec = torch.rand(batch_size, 30, c.audio["num_mels"]).to(device) | |
mel_lengths = torch.randint(20, 30, (batch_size,)).long().to(device) | |
speaker_ids = torch.randint(0, 5, (batch_size,)).long().to(device) | |
return input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids | |
def _check_parameter_changes(model, model_ref): | |
count = 0 | |
for param, param_ref in zip(model.parameters(), model_ref.parameters()): | |
assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format( | |
count, param.shape, param, param_ref | |
) | |
count += 1 | |
def test_init_multispeaker(self): | |
config = GlowTTSConfig(num_chars=32) | |
model = GlowTTS(config) | |
# speaker embedding with default speaker_embedding_dim | |
config.use_speaker_embedding = True | |
config.num_speakers = 5 | |
config.d_vector_dim = None | |
model.init_multispeaker(config) | |
self.assertEqual(model.c_in_channels, model.hidden_channels_enc) | |
# use external speaker embeddings with speaker_embedding_dim = 301 | |
config = GlowTTSConfig(num_chars=32) | |
config.use_d_vector_file = True | |
config.d_vector_dim = 301 | |
model = GlowTTS(config) | |
model.init_multispeaker(config) | |
self.assertEqual(model.c_in_channels, 301) | |
# use speaker embedddings by the provided speaker_manager | |
config = GlowTTSConfig(num_chars=32) | |
config.use_speaker_embedding = True | |
config.speakers_file = os.path.join(get_tests_data_path(), "ljspeech", "speakers.json") | |
speaker_manager = SpeakerManager.init_from_config(config) | |
model = GlowTTS(config) | |
model.speaker_manager = speaker_manager | |
model.init_multispeaker(config) | |
self.assertEqual(model.c_in_channels, model.hidden_channels_enc) | |
self.assertEqual(model.num_speakers, speaker_manager.num_speakers) | |
# use external speaker embeddings by the provided speaker_manager | |
config = GlowTTSConfig(num_chars=32) | |
config.use_d_vector_file = True | |
config.d_vector_dim = 256 | |
config.d_vector_file = os.path.join(get_tests_data_path(), "dummy_speakers.json") | |
speaker_manager = SpeakerManager.init_from_config(config) | |
model = GlowTTS(config) | |
model.speaker_manager = speaker_manager | |
model.init_multispeaker(config) | |
self.assertEqual(model.c_in_channels, speaker_manager.embedding_dim) | |
self.assertEqual(model.num_speakers, speaker_manager.num_speakers) | |
def test_unlock_act_norm_layers(self): | |
config = GlowTTSConfig(num_chars=32) | |
model = GlowTTS(config).to(device) | |
model.unlock_act_norm_layers() | |
for f in model.decoder.flows: | |
if getattr(f, "set_ddi", False): | |
self.assertFalse(f.initialized) | |
def test_lock_act_norm_layers(self): | |
config = GlowTTSConfig(num_chars=32) | |
model = GlowTTS(config).to(device) | |
model.lock_act_norm_layers() | |
for f in model.decoder.flows: | |
if getattr(f, "set_ddi", False): | |
self.assertTrue(f.initialized) | |
def _test_forward(self, batch_size): | |
input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids = self._create_inputs(batch_size) | |
# create model | |
config = GlowTTSConfig(num_chars=32) | |
model = GlowTTS(config).to(device) | |
model.train() | |
print(" > Num parameters for GlowTTS model:%s" % (count_parameters(model))) | |
# inference encoder and decoder with MAS | |
y = model.forward(input_dummy, input_lengths, mel_spec, mel_lengths) | |
self.assertEqual(y["z"].shape, mel_spec.shape) | |
self.assertEqual(y["logdet"].shape, torch.Size([batch_size])) | |
self.assertEqual(y["y_mean"].shape, mel_spec.shape) | |
self.assertEqual(y["y_log_scale"].shape, mel_spec.shape) | |
self.assertEqual(y["alignments"].shape, mel_spec.shape[:2] + (input_dummy.shape[1],)) | |
self.assertEqual(y["durations_log"].shape, input_dummy.shape + (1,)) | |
self.assertEqual(y["total_durations_log"].shape, input_dummy.shape + (1,)) | |
def test_forward(self): | |
self._test_forward(1) | |
self._test_forward(3) | |
def _test_forward_with_d_vector(self, batch_size): | |
input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids = self._create_inputs(batch_size) | |
d_vector = torch.rand(batch_size, 256).to(device) | |
# create model | |
config = GlowTTSConfig( | |
num_chars=32, | |
use_d_vector_file=True, | |
d_vector_dim=256, | |
d_vector_file=os.path.join(get_tests_data_path(), "dummy_speakers.json"), | |
) | |
model = GlowTTS.init_from_config(config, verbose=False).to(device) | |
model.train() | |
print(" > Num parameters for GlowTTS model:%s" % (count_parameters(model))) | |
# inference encoder and decoder with MAS | |
y = model.forward(input_dummy, input_lengths, mel_spec, mel_lengths, {"d_vectors": d_vector}) | |
self.assertEqual(y["z"].shape, mel_spec.shape) | |
self.assertEqual(y["logdet"].shape, torch.Size([batch_size])) | |
self.assertEqual(y["y_mean"].shape, mel_spec.shape) | |
self.assertEqual(y["y_log_scale"].shape, mel_spec.shape) | |
self.assertEqual(y["alignments"].shape, mel_spec.shape[:2] + (input_dummy.shape[1],)) | |
self.assertEqual(y["durations_log"].shape, input_dummy.shape + (1,)) | |
self.assertEqual(y["total_durations_log"].shape, input_dummy.shape + (1,)) | |
def test_forward_with_d_vector(self): | |
self._test_forward_with_d_vector(1) | |
self._test_forward_with_d_vector(3) | |
def _test_forward_with_speaker_id(self, batch_size): | |
input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids = self._create_inputs(batch_size) | |
speaker_ids = torch.randint(0, 24, (batch_size,)).long().to(device) | |
# create model | |
config = GlowTTSConfig( | |
num_chars=32, | |
use_speaker_embedding=True, | |
num_speakers=24, | |
) | |
model = GlowTTS.init_from_config(config, verbose=False).to(device) | |
model.train() | |
print(" > Num parameters for GlowTTS model:%s" % (count_parameters(model))) | |
# inference encoder and decoder with MAS | |
y = model.forward(input_dummy, input_lengths, mel_spec, mel_lengths, {"speaker_ids": speaker_ids}) | |
self.assertEqual(y["z"].shape, mel_spec.shape) | |
self.assertEqual(y["logdet"].shape, torch.Size([batch_size])) | |
self.assertEqual(y["y_mean"].shape, mel_spec.shape) | |
self.assertEqual(y["y_log_scale"].shape, mel_spec.shape) | |
self.assertEqual(y["alignments"].shape, mel_spec.shape[:2] + (input_dummy.shape[1],)) | |
self.assertEqual(y["durations_log"].shape, input_dummy.shape + (1,)) | |
self.assertEqual(y["total_durations_log"].shape, input_dummy.shape + (1,)) | |
def test_forward_with_speaker_id(self): | |
self._test_forward_with_speaker_id(1) | |
self._test_forward_with_speaker_id(3) | |
def _assert_inference_outputs(self, outputs, input_dummy, mel_spec): | |
output_shape = outputs["model_outputs"].shape | |
self.assertEqual(outputs["model_outputs"].shape[::2], mel_spec.shape[::2]) | |
self.assertEqual(outputs["logdet"], None) | |
self.assertEqual(outputs["y_mean"].shape, output_shape) | |
self.assertEqual(outputs["y_log_scale"].shape, output_shape) | |
self.assertEqual(outputs["alignments"].shape, output_shape[:2] + (input_dummy.shape[1],)) | |
self.assertEqual(outputs["durations_log"].shape, input_dummy.shape + (1,)) | |
self.assertEqual(outputs["total_durations_log"].shape, input_dummy.shape + (1,)) | |
def _test_inference(self, batch_size): | |
input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids = self._create_inputs(batch_size) | |
config = GlowTTSConfig(num_chars=32) | |
model = GlowTTS(config).to(device) | |
model.eval() | |
outputs = model.inference(input_dummy, {"x_lengths": input_lengths}) | |
self._assert_inference_outputs(outputs, input_dummy, mel_spec) | |
def test_inference(self): | |
self._test_inference(1) | |
self._test_inference(3) | |
def _test_inference_with_d_vector(self, batch_size): | |
input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids = self._create_inputs(batch_size) | |
d_vector = torch.rand(batch_size, 256).to(device) | |
config = GlowTTSConfig( | |
num_chars=32, | |
use_d_vector_file=True, | |
d_vector_dim=256, | |
d_vector_file=os.path.join(get_tests_data_path(), "dummy_speakers.json"), | |
) | |
model = GlowTTS.init_from_config(config, verbose=False).to(device) | |
model.eval() | |
outputs = model.inference(input_dummy, {"x_lengths": input_lengths, "d_vectors": d_vector}) | |
self._assert_inference_outputs(outputs, input_dummy, mel_spec) | |
def test_inference_with_d_vector(self): | |
self._test_inference_with_d_vector(1) | |
self._test_inference_with_d_vector(3) | |
def _test_inference_with_speaker_ids(self, batch_size): | |
input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids = self._create_inputs(batch_size) | |
speaker_ids = torch.randint(0, 24, (batch_size,)).long().to(device) | |
# create model | |
config = GlowTTSConfig( | |
num_chars=32, | |
use_speaker_embedding=True, | |
num_speakers=24, | |
) | |
model = GlowTTS.init_from_config(config, verbose=False).to(device) | |
outputs = model.inference(input_dummy, {"x_lengths": input_lengths, "speaker_ids": speaker_ids}) | |
self._assert_inference_outputs(outputs, input_dummy, mel_spec) | |
def test_inference_with_speaker_ids(self): | |
self._test_inference_with_speaker_ids(1) | |
self._test_inference_with_speaker_ids(3) | |
def _test_inference_with_MAS(self, batch_size): | |
input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids = self._create_inputs(batch_size) | |
# create model | |
config = GlowTTSConfig(num_chars=32) | |
model = GlowTTS(config).to(device) | |
model.eval() | |
# inference encoder and decoder with MAS | |
y = model.inference_with_MAS(input_dummy, input_lengths, mel_spec, mel_lengths) | |
y2 = model.decoder_inference(mel_spec, mel_lengths) | |
assert ( | |
y2["model_outputs"].shape == y["model_outputs"].shape | |
), "Difference between the shapes of the glowTTS inference with MAS ({}) and the inference using only the decoder ({}) !!".format( | |
y["model_outputs"].shape, y2["model_outputs"].shape | |
) | |
def test_inference_with_MAS(self): | |
self._test_inference_with_MAS(1) | |
self._test_inference_with_MAS(3) | |
def test_train_step(self): | |
batch_size = BATCH_SIZE | |
input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids = self._create_inputs(batch_size) | |
criterion = GlowTTSLoss() | |
# model to train | |
config = GlowTTSConfig(num_chars=32) | |
model = GlowTTS(config).to(device) | |
# reference model to compare model weights | |
model_ref = GlowTTS(config).to(device) | |
model.train() | |
print(" > Num parameters for GlowTTS model:%s" % (count_parameters(model))) | |
# pass the state to ref model | |
model_ref.load_state_dict(copy.deepcopy(model.state_dict())) | |
count = 0 | |
for param, param_ref in zip(model.parameters(), model_ref.parameters()): | |
assert (param - param_ref).sum() == 0, param | |
count += 1 | |
optimizer = optim.Adam(model.parameters(), lr=0.001) | |
for _ in range(5): | |
optimizer.zero_grad() | |
outputs = model.forward(input_dummy, input_lengths, mel_spec, mel_lengths, None) | |
loss_dict = criterion( | |
outputs["z"], | |
outputs["y_mean"], | |
outputs["y_log_scale"], | |
outputs["logdet"], | |
mel_lengths, | |
outputs["durations_log"], | |
outputs["total_durations_log"], | |
input_lengths, | |
) | |
loss = loss_dict["loss"] | |
loss.backward() | |
optimizer.step() | |
# check parameter changes | |
self._check_parameter_changes(model, model_ref) | |
def test_train_eval_log(self): | |
batch_size = BATCH_SIZE | |
input_dummy, input_lengths, mel_spec, mel_lengths, _ = self._create_inputs(batch_size) | |
batch = {} | |
batch["text_input"] = input_dummy | |
batch["text_lengths"] = input_lengths | |
batch["mel_lengths"] = mel_lengths | |
batch["mel_input"] = mel_spec | |
batch["d_vectors"] = None | |
batch["speaker_ids"] = None | |
config = GlowTTSConfig(num_chars=32) | |
model = GlowTTS.init_from_config(config, verbose=False).to(device) | |
model.run_data_dep_init = False | |
model.train() | |
logger = TensorboardLogger( | |
log_dir=os.path.join(get_tests_output_path(), "dummy_glow_tts_logs"), model_name="glow_tts_test_train_log" | |
) | |
criterion = model.get_criterion() | |
outputs, _ = model.train_step(batch, criterion) | |
model.train_log(batch, outputs, logger, None, 1) | |
model.eval_log(batch, outputs, logger, None, 1) | |
logger.finish() | |
def test_test_run(self): | |
config = GlowTTSConfig(num_chars=32) | |
model = GlowTTS.init_from_config(config, verbose=False).to(device) | |
model.run_data_dep_init = False | |
model.eval() | |
test_figures, test_audios = model.test_run(None) | |
self.assertTrue(test_figures is not None) | |
self.assertTrue(test_audios is not None) | |
def test_load_checkpoint(self): | |
chkp_path = os.path.join(get_tests_output_path(), "dummy_glow_tts_checkpoint.pth") | |
config = GlowTTSConfig(num_chars=32) | |
model = GlowTTS.init_from_config(config, verbose=False).to(device) | |
chkp = {} | |
chkp["model"] = model.state_dict() | |
torch.save(chkp, chkp_path) | |
model.load_checkpoint(config, chkp_path) | |
self.assertTrue(model.training) | |
model.load_checkpoint(config, chkp_path, eval=True) | |
self.assertFalse(model.training) | |
def test_get_criterion(self): | |
config = GlowTTSConfig(num_chars=32) | |
model = GlowTTS.init_from_config(config, verbose=False).to(device) | |
criterion = model.get_criterion() | |
self.assertTrue(criterion is not None) | |
def test_init_from_config(self): | |
config = GlowTTSConfig(num_chars=32) | |
model = GlowTTS.init_from_config(config, verbose=False).to(device) | |
config = GlowTTSConfig(num_chars=32, num_speakers=2) | |
model = GlowTTS.init_from_config(config, verbose=False).to(device) | |
self.assertTrue(model.num_speakers == 2) | |
self.assertTrue(not hasattr(model, "emb_g")) | |
config = GlowTTSConfig(num_chars=32, num_speakers=2, use_speaker_embedding=True) | |
model = GlowTTS.init_from_config(config, verbose=False).to(device) | |
self.assertTrue(model.num_speakers == 2) | |
self.assertTrue(hasattr(model, "emb_g")) | |
config = GlowTTSConfig( | |
num_chars=32, | |
num_speakers=2, | |
use_speaker_embedding=True, | |
speakers_file=os.path.join(get_tests_data_path(), "ljspeech", "speakers.json"), | |
) | |
model = GlowTTS.init_from_config(config, verbose=False).to(device) | |
self.assertTrue(model.num_speakers == 10) | |
self.assertTrue(hasattr(model, "emb_g")) | |
config = GlowTTSConfig( | |
num_chars=32, | |
use_d_vector_file=True, | |
d_vector_dim=256, | |
d_vector_file=os.path.join(get_tests_data_path(), "dummy_speakers.json"), | |
) | |
model = GlowTTS.init_from_config(config, verbose=False).to(device) | |
self.assertTrue(model.num_speakers == 1) | |
self.assertTrue(not hasattr(model, "emb_g")) | |
self.assertTrue(model.c_in_channels == config.d_vector_dim) | |