Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from TTS.tts.layers.feed_forward.decoder import Decoder | |
from TTS.tts.layers.feed_forward.encoder import Encoder | |
from TTS.tts.utils.helpers import sequence_mask | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
def test_encoder(): | |
input_dummy = torch.rand(8, 14, 37).to(device) | |
input_lengths = torch.randint(31, 37, (8,)).long().to(device) | |
input_lengths[-1] = 37 | |
input_mask = torch.unsqueeze(sequence_mask(input_lengths, input_dummy.size(2)), 1).to(device) | |
# relative positional transformer encoder | |
layer = Encoder( | |
out_channels=11, | |
in_hidden_channels=14, | |
encoder_type="relative_position_transformer", | |
encoder_params={ | |
"hidden_channels_ffn": 768, | |
"num_heads": 2, | |
"kernel_size": 3, | |
"dropout_p": 0.1, | |
"num_layers": 6, | |
"rel_attn_window_size": 4, | |
"input_length": None, | |
}, | |
).to(device) | |
output = layer(input_dummy, input_mask) | |
assert list(output.shape) == [8, 11, 37] | |
# residual conv bn encoder | |
layer = Encoder( | |
out_channels=11, | |
in_hidden_channels=14, | |
encoder_type="residual_conv_bn", | |
encoder_params={"kernel_size": 4, "dilations": 4 * [1, 2, 4] + [1], "num_conv_blocks": 2, "num_res_blocks": 13}, | |
).to(device) | |
output = layer(input_dummy, input_mask) | |
assert list(output.shape) == [8, 11, 37] | |
# FFTransformer encoder | |
layer = Encoder( | |
out_channels=14, | |
in_hidden_channels=14, | |
encoder_type="fftransformer", | |
encoder_params={"hidden_channels_ffn": 31, "num_heads": 2, "num_layers": 2, "dropout_p": 0.1}, | |
).to(device) | |
output = layer(input_dummy, input_mask) | |
assert list(output.shape) == [8, 14, 37] | |
def test_decoder(): | |
input_dummy = torch.rand(8, 128, 37).to(device) | |
input_lengths = torch.randint(31, 37, (8,)).long().to(device) | |
input_lengths[-1] = 37 | |
input_mask = torch.unsqueeze(sequence_mask(input_lengths, input_dummy.size(2)), 1).to(device) | |
# residual bn conv decoder | |
layer = Decoder(out_channels=11, in_hidden_channels=128).to(device) | |
output = layer(input_dummy, input_mask) | |
assert list(output.shape) == [8, 11, 37] | |
# transformer decoder | |
layer = Decoder( | |
out_channels=11, | |
in_hidden_channels=128, | |
decoder_type="relative_position_transformer", | |
decoder_params={ | |
"hidden_channels_ffn": 128, | |
"num_heads": 2, | |
"kernel_size": 3, | |
"dropout_p": 0.1, | |
"num_layers": 8, | |
"rel_attn_window_size": 4, | |
"input_length": None, | |
}, | |
).to(device) | |
output = layer(input_dummy, input_mask) | |
assert list(output.shape) == [8, 11, 37] | |
# wavenet decoder | |
layer = Decoder( | |
out_channels=11, | |
in_hidden_channels=128, | |
decoder_type="wavenet", | |
decoder_params={ | |
"num_blocks": 12, | |
"hidden_channels": 192, | |
"kernel_size": 5, | |
"dilation_rate": 1, | |
"num_layers": 4, | |
"dropout_p": 0.05, | |
}, | |
).to(device) | |
output = layer(input_dummy, input_mask) | |
# FFTransformer decoder | |
layer = Decoder( | |
out_channels=11, | |
in_hidden_channels=128, | |
decoder_type="fftransformer", | |
decoder_params={ | |
"hidden_channels_ffn": 31, | |
"num_heads": 2, | |
"dropout_p": 0.1, | |
"num_layers": 2, | |
}, | |
).to(device) | |
output = layer(input_dummy, input_mask) | |
assert list(output.shape) == [8, 11, 37] | |