Spaces:
Running
on
Zero
Running
on
Zero
import copy | |
import os | |
import unittest | |
import torch | |
from trainer.logging.tensorboard_logger import TensorboardLogger | |
from tests import assertHasAttr, assertHasNotAttr, get_tests_data_path, get_tests_input_path, get_tests_output_path | |
from TTS.config import load_config | |
from TTS.encoder.utils.generic_utils import setup_encoder_model | |
from TTS.tts.configs.vits_config import VitsConfig | |
from TTS.tts.models.vits import ( | |
Vits, | |
VitsArgs, | |
VitsAudioConfig, | |
amp_to_db, | |
db_to_amp, | |
load_audio, | |
spec_to_mel, | |
wav_to_mel, | |
wav_to_spec, | |
) | |
from TTS.tts.utils.speakers import SpeakerManager | |
LANG_FILE = os.path.join(get_tests_input_path(), "language_ids.json") | |
SPEAKER_ENCODER_CONFIG = os.path.join(get_tests_input_path(), "test_speaker_encoder_config.json") | |
WAV_FILE = os.path.join(get_tests_input_path(), "example_1.wav") | |
torch.manual_seed(1) | |
use_cuda = torch.cuda.is_available() | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
# pylint: disable=no-self-use | |
class TestVits(unittest.TestCase): | |
def test_load_audio(self): | |
wav, sr = load_audio(WAV_FILE) | |
self.assertEqual(wav.shape, (1, 41885)) | |
self.assertEqual(sr, 22050) | |
spec = wav_to_spec(wav, n_fft=1024, hop_length=512, win_length=1024, center=False) | |
mel = wav_to_mel( | |
wav, | |
n_fft=1024, | |
num_mels=80, | |
sample_rate=sr, | |
hop_length=512, | |
win_length=1024, | |
fmin=0, | |
fmax=8000, | |
center=False, | |
) | |
mel2 = spec_to_mel(spec, n_fft=1024, num_mels=80, sample_rate=sr, fmin=0, fmax=8000) | |
self.assertEqual((mel - mel2).abs().max(), 0) | |
self.assertEqual(spec.shape[0], mel.shape[0]) | |
self.assertEqual(spec.shape[2], mel.shape[2]) | |
spec_db = amp_to_db(spec) | |
spec_amp = db_to_amp(spec_db) | |
self.assertAlmostEqual((spec - spec_amp).abs().max(), 0, delta=1e-4) | |
def test_dataset(self): | |
"""TODO:""" | |
... | |
def test_init_multispeaker(self): | |
num_speakers = 10 | |
args = VitsArgs(num_speakers=num_speakers, use_speaker_embedding=True) | |
model = Vits(args) | |
assertHasAttr(self, model, "emb_g") | |
args = VitsArgs(num_speakers=0, use_speaker_embedding=True) | |
model = Vits(args) | |
assertHasNotAttr(self, model, "emb_g") | |
args = VitsArgs(num_speakers=10, use_speaker_embedding=False) | |
model = Vits(args) | |
assertHasNotAttr(self, model, "emb_g") | |
args = VitsArgs(d_vector_dim=101, use_d_vector_file=True) | |
model = Vits(args) | |
self.assertEqual(model.embedded_speaker_dim, 101) | |
def test_init_multilingual(self): | |
args = VitsArgs(language_ids_file=None, use_language_embedding=False) | |
model = Vits(args) | |
self.assertEqual(model.language_manager, None) | |
self.assertEqual(model.embedded_language_dim, 0) | |
assertHasNotAttr(self, model, "emb_l") | |
args = VitsArgs(language_ids_file=LANG_FILE) | |
model = Vits(args) | |
self.assertNotEqual(model.language_manager, None) | |
self.assertEqual(model.embedded_language_dim, 0) | |
assertHasNotAttr(self, model, "emb_l") | |
args = VitsArgs(language_ids_file=LANG_FILE, use_language_embedding=True) | |
model = Vits(args) | |
self.assertNotEqual(model.language_manager, None) | |
self.assertEqual(model.embedded_language_dim, args.embedded_language_dim) | |
assertHasAttr(self, model, "emb_l") | |
args = VitsArgs(language_ids_file=LANG_FILE, use_language_embedding=True, embedded_language_dim=102) | |
model = Vits(args) | |
self.assertNotEqual(model.language_manager, None) | |
self.assertEqual(model.embedded_language_dim, args.embedded_language_dim) | |
assertHasAttr(self, model, "emb_l") | |
def test_get_aux_input(self): | |
aux_input = {"speaker_ids": None, "style_wav": None, "d_vectors": None, "language_ids": None} | |
args = VitsArgs() | |
model = Vits(args) | |
aux_out = model.get_aux_input(aux_input) | |
speaker_id = torch.randint(10, (1,)) | |
language_id = torch.randint(10, (1,)) | |
d_vector = torch.rand(1, 128) | |
aux_input = {"speaker_ids": speaker_id, "style_wav": None, "d_vectors": d_vector, "language_ids": language_id} | |
aux_out = model.get_aux_input(aux_input) | |
self.assertEqual(aux_out["speaker_ids"].shape, speaker_id.shape) | |
self.assertEqual(aux_out["language_ids"].shape, language_id.shape) | |
self.assertEqual(aux_out["d_vectors"].shape, d_vector.unsqueeze(0).transpose(2, 1).shape) | |
def test_voice_conversion(self): | |
num_speakers = 10 | |
spec_len = 101 | |
spec_effective_len = 50 | |
args = VitsArgs(num_speakers=num_speakers, use_speaker_embedding=True) | |
model = Vits(args) | |
ref_inp = torch.randn(1, 513, spec_len) | |
ref_inp_len = torch.randint(1, spec_effective_len, (1,)) | |
ref_spk_id = torch.randint(1, num_speakers, (1,)).item() | |
tgt_spk_id = torch.randint(1, num_speakers, (1,)).item() | |
o_hat, y_mask, (z, z_p, z_hat) = model.voice_conversion(ref_inp, ref_inp_len, ref_spk_id, tgt_spk_id) | |
self.assertEqual(o_hat.shape, (1, 1, spec_len * 256)) | |
self.assertEqual(y_mask.shape, (1, 1, spec_len)) | |
self.assertEqual(y_mask.sum(), ref_inp_len[0]) | |
self.assertEqual(z.shape, (1, args.hidden_channels, spec_len)) | |
self.assertEqual(z_p.shape, (1, args.hidden_channels, spec_len)) | |
self.assertEqual(z_hat.shape, (1, args.hidden_channels, spec_len)) | |
def _create_inputs(self, config, batch_size=2): | |
input_dummy = torch.randint(0, 24, (batch_size, 128)).long().to(device) | |
input_lengths = torch.randint(100, 129, (batch_size,)).long().to(device) | |
input_lengths[-1] = 128 | |
spec = torch.rand(batch_size, config.audio["fft_size"] // 2 + 1, 30).to(device) | |
mel = torch.rand(batch_size, config.audio["num_mels"], 30).to(device) | |
spec_lengths = torch.randint(20, 30, (batch_size,)).long().to(device) | |
spec_lengths[-1] = spec.size(2) | |
waveform = torch.rand(batch_size, 1, spec.size(2) * config.audio["hop_length"]).to(device) | |
return input_dummy, input_lengths, mel, spec, spec_lengths, waveform | |
def _check_forward_outputs(self, config, output_dict, encoder_config=None, batch_size=2): | |
self.assertEqual( | |
output_dict["model_outputs"].shape[2], config.model_args.spec_segment_size * config.audio["hop_length"] | |
) | |
self.assertEqual(output_dict["alignments"].shape, (batch_size, 128, 30)) | |
self.assertEqual(output_dict["alignments"].max(), 1) | |
self.assertEqual(output_dict["alignments"].min(), 0) | |
self.assertEqual(output_dict["z"].shape, (batch_size, config.model_args.hidden_channels, 30)) | |
self.assertEqual(output_dict["z_p"].shape, (batch_size, config.model_args.hidden_channels, 30)) | |
self.assertEqual(output_dict["m_p"].shape, (batch_size, config.model_args.hidden_channels, 30)) | |
self.assertEqual(output_dict["logs_p"].shape, (batch_size, config.model_args.hidden_channels, 30)) | |
self.assertEqual(output_dict["m_q"].shape, (batch_size, config.model_args.hidden_channels, 30)) | |
self.assertEqual(output_dict["logs_q"].shape, (batch_size, config.model_args.hidden_channels, 30)) | |
self.assertEqual( | |
output_dict["waveform_seg"].shape[2], config.model_args.spec_segment_size * config.audio["hop_length"] | |
) | |
if encoder_config: | |
self.assertEqual(output_dict["gt_spk_emb"].shape, (batch_size, encoder_config.model_params["proj_dim"])) | |
self.assertEqual(output_dict["syn_spk_emb"].shape, (batch_size, encoder_config.model_params["proj_dim"])) | |
else: | |
self.assertEqual(output_dict["gt_spk_emb"], None) | |
self.assertEqual(output_dict["syn_spk_emb"], None) | |
def test_forward(self): | |
num_speakers = 0 | |
config = VitsConfig(num_speakers=num_speakers, use_speaker_embedding=True) | |
config.model_args.spec_segment_size = 10 | |
input_dummy, input_lengths, _, spec, spec_lengths, waveform = self._create_inputs(config) | |
model = Vits(config).to(device) | |
output_dict = model.forward(input_dummy, input_lengths, spec, spec_lengths, waveform) | |
self._check_forward_outputs(config, output_dict) | |
def test_multispeaker_forward(self): | |
num_speakers = 10 | |
config = VitsConfig(num_speakers=num_speakers, use_speaker_embedding=True) | |
config.model_args.spec_segment_size = 10 | |
input_dummy, input_lengths, _, spec, spec_lengths, waveform = self._create_inputs(config) | |
speaker_ids = torch.randint(0, num_speakers, (8,)).long().to(device) | |
model = Vits(config).to(device) | |
output_dict = model.forward( | |
input_dummy, input_lengths, spec, spec_lengths, waveform, aux_input={"speaker_ids": speaker_ids} | |
) | |
self._check_forward_outputs(config, output_dict) | |
def test_d_vector_forward(self): | |
batch_size = 2 | |
args = VitsArgs( | |
spec_segment_size=10, | |
num_chars=32, | |
use_d_vector_file=True, | |
d_vector_dim=256, | |
d_vector_file=[os.path.join(get_tests_data_path(), "dummy_speakers.json")], | |
) | |
config = VitsConfig(model_args=args) | |
model = Vits.init_from_config(config, verbose=False).to(device) | |
model.train() | |
input_dummy, input_lengths, _, spec, spec_lengths, waveform = self._create_inputs(config, batch_size=batch_size) | |
d_vectors = torch.randn(batch_size, 256).to(device) | |
output_dict = model.forward( | |
input_dummy, input_lengths, spec, spec_lengths, waveform, aux_input={"d_vectors": d_vectors} | |
) | |
self._check_forward_outputs(config, output_dict) | |
def test_multilingual_forward(self): | |
num_speakers = 10 | |
num_langs = 3 | |
batch_size = 2 | |
args = VitsArgs(language_ids_file=LANG_FILE, use_language_embedding=True, spec_segment_size=10) | |
config = VitsConfig(num_speakers=num_speakers, use_speaker_embedding=True, model_args=args) | |
input_dummy, input_lengths, _, spec, spec_lengths, waveform = self._create_inputs(config, batch_size=batch_size) | |
speaker_ids = torch.randint(0, num_speakers, (batch_size,)).long().to(device) | |
lang_ids = torch.randint(0, num_langs, (batch_size,)).long().to(device) | |
model = Vits(config).to(device) | |
output_dict = model.forward( | |
input_dummy, | |
input_lengths, | |
spec, | |
spec_lengths, | |
waveform, | |
aux_input={"speaker_ids": speaker_ids, "language_ids": lang_ids}, | |
) | |
self._check_forward_outputs(config, output_dict) | |
def test_secl_forward(self): | |
num_speakers = 10 | |
num_langs = 3 | |
batch_size = 2 | |
speaker_encoder_config = load_config(SPEAKER_ENCODER_CONFIG) | |
speaker_encoder_config.model_params["use_torch_spec"] = True | |
speaker_encoder = setup_encoder_model(speaker_encoder_config).to(device) | |
speaker_manager = SpeakerManager() | |
speaker_manager.encoder = speaker_encoder | |
args = VitsArgs( | |
language_ids_file=LANG_FILE, | |
use_language_embedding=True, | |
spec_segment_size=10, | |
use_speaker_encoder_as_loss=True, | |
) | |
config = VitsConfig(num_speakers=num_speakers, use_speaker_embedding=True, model_args=args) | |
config.audio.sample_rate = 16000 | |
input_dummy, input_lengths, _, spec, spec_lengths, waveform = self._create_inputs(config, batch_size=batch_size) | |
speaker_ids = torch.randint(0, num_speakers, (batch_size,)).long().to(device) | |
lang_ids = torch.randint(0, num_langs, (batch_size,)).long().to(device) | |
model = Vits(config, speaker_manager=speaker_manager).to(device) | |
output_dict = model.forward( | |
input_dummy, | |
input_lengths, | |
spec, | |
spec_lengths, | |
waveform, | |
aux_input={"speaker_ids": speaker_ids, "language_ids": lang_ids}, | |
) | |
self._check_forward_outputs(config, output_dict, speaker_encoder_config) | |
def _check_inference_outputs(self, config, outputs, input_dummy, batch_size=1): | |
feat_len = outputs["z"].shape[2] | |
self.assertEqual(outputs["model_outputs"].shape[:2], (batch_size, 1)) # we don't know the channel dimension | |
self.assertEqual(outputs["alignments"].shape, (batch_size, input_dummy.shape[1], feat_len)) | |
self.assertEqual(outputs["z"].shape, (batch_size, config.model_args.hidden_channels, feat_len)) | |
self.assertEqual(outputs["z_p"].shape, (batch_size, config.model_args.hidden_channels, feat_len)) | |
self.assertEqual(outputs["m_p"].shape, (batch_size, config.model_args.hidden_channels, feat_len)) | |
self.assertEqual(outputs["logs_p"].shape, (batch_size, config.model_args.hidden_channels, feat_len)) | |
def test_inference(self): | |
num_speakers = 0 | |
config = VitsConfig(num_speakers=num_speakers, use_speaker_embedding=True) | |
model = Vits(config).to(device) | |
batch_size = 1 | |
input_dummy, *_ = self._create_inputs(config, batch_size=batch_size) | |
outputs = model.inference(input_dummy) | |
self._check_inference_outputs(config, outputs, input_dummy, batch_size=batch_size) | |
batch_size = 2 | |
input_dummy, input_lengths, *_ = self._create_inputs(config, batch_size=batch_size) | |
outputs = model.inference(input_dummy, aux_input={"x_lengths": input_lengths}) | |
self._check_inference_outputs(config, outputs, input_dummy, batch_size=batch_size) | |
def test_multispeaker_inference(self): | |
num_speakers = 10 | |
config = VitsConfig(num_speakers=num_speakers, use_speaker_embedding=True) | |
model = Vits(config).to(device) | |
batch_size = 1 | |
input_dummy, *_ = self._create_inputs(config, batch_size=batch_size) | |
speaker_ids = torch.randint(0, num_speakers, (batch_size,)).long().to(device) | |
outputs = model.inference(input_dummy, {"speaker_ids": speaker_ids}) | |
self._check_inference_outputs(config, outputs, input_dummy, batch_size=batch_size) | |
batch_size = 2 | |
input_dummy, input_lengths, *_ = self._create_inputs(config, batch_size=batch_size) | |
speaker_ids = torch.randint(0, num_speakers, (batch_size,)).long().to(device) | |
outputs = model.inference(input_dummy, {"x_lengths": input_lengths, "speaker_ids": speaker_ids}) | |
self._check_inference_outputs(config, outputs, input_dummy, batch_size=batch_size) | |
def test_multilingual_inference(self): | |
num_speakers = 10 | |
num_langs = 3 | |
args = VitsArgs(language_ids_file=LANG_FILE, use_language_embedding=True, spec_segment_size=10) | |
config = VitsConfig(num_speakers=num_speakers, use_speaker_embedding=True, model_args=args) | |
model = Vits(config).to(device) | |
input_dummy = torch.randint(0, 24, (1, 128)).long().to(device) | |
speaker_ids = torch.randint(0, num_speakers, (1,)).long().to(device) | |
lang_ids = torch.randint(0, num_langs, (1,)).long().to(device) | |
_ = model.inference(input_dummy, {"speaker_ids": speaker_ids, "language_ids": lang_ids}) | |
batch_size = 1 | |
input_dummy, *_ = self._create_inputs(config, batch_size=batch_size) | |
speaker_ids = torch.randint(0, num_speakers, (batch_size,)).long().to(device) | |
lang_ids = torch.randint(0, num_langs, (batch_size,)).long().to(device) | |
outputs = model.inference(input_dummy, {"speaker_ids": speaker_ids, "language_ids": lang_ids}) | |
self._check_inference_outputs(config, outputs, input_dummy, batch_size=batch_size) | |
batch_size = 2 | |
input_dummy, input_lengths, *_ = self._create_inputs(config, batch_size=batch_size) | |
speaker_ids = torch.randint(0, num_speakers, (batch_size,)).long().to(device) | |
lang_ids = torch.randint(0, num_langs, (batch_size,)).long().to(device) | |
outputs = model.inference( | |
input_dummy, {"x_lengths": input_lengths, "speaker_ids": speaker_ids, "language_ids": lang_ids} | |
) | |
self._check_inference_outputs(config, outputs, input_dummy, batch_size=batch_size) | |
def test_d_vector_inference(self): | |
args = VitsArgs( | |
spec_segment_size=10, | |
num_chars=32, | |
use_d_vector_file=True, | |
d_vector_dim=256, | |
d_vector_file=[os.path.join(get_tests_data_path(), "dummy_speakers.json")], | |
) | |
config = VitsConfig(model_args=args) | |
model = Vits.init_from_config(config, verbose=False).to(device) | |
model.eval() | |
# batch size = 1 | |
input_dummy = torch.randint(0, 24, (1, 128)).long().to(device) | |
d_vectors = torch.randn(1, 256).to(device) | |
outputs = model.inference(input_dummy, aux_input={"d_vectors": d_vectors}) | |
self._check_inference_outputs(config, outputs, input_dummy) | |
# batch size = 2 | |
input_dummy, input_lengths, *_ = self._create_inputs(config) | |
d_vectors = torch.randn(2, 256).to(device) | |
outputs = model.inference(input_dummy, aux_input={"x_lengths": input_lengths, "d_vectors": d_vectors}) | |
self._check_inference_outputs(config, outputs, input_dummy, batch_size=2) | |
def _check_parameter_changes(model, model_ref): | |
count = 0 | |
for item1, item2 in zip(model.named_parameters(), model_ref.named_parameters()): | |
name = item1[0] | |
param = item1[1] | |
param_ref = item2[1] | |
assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format( | |
name, param.shape, param, param_ref | |
) | |
count = count + 1 | |
def _create_batch(self, config, batch_size): | |
input_dummy, input_lengths, mel, spec, mel_lengths, _ = self._create_inputs(config, batch_size) | |
batch = {} | |
batch["tokens"] = input_dummy | |
batch["token_lens"] = input_lengths | |
batch["spec_lens"] = mel_lengths | |
batch["mel_lens"] = mel_lengths | |
batch["spec"] = spec | |
batch["mel"] = mel | |
batch["waveform"] = torch.rand(batch_size, 1, config.audio["sample_rate"] * 10).to(device) | |
batch["d_vectors"] = None | |
batch["speaker_ids"] = None | |
batch["language_ids"] = None | |
return batch | |
def test_train_step(self): | |
# setup the model | |
with torch.autograd.set_detect_anomaly(True): | |
config = VitsConfig(model_args=VitsArgs(num_chars=32, spec_segment_size=10)) | |
model = Vits(config).to(device) | |
model.train() | |
# model to train | |
optimizers = model.get_optimizer() | |
criterions = model.get_criterion() | |
criterions = [criterions[0].to(device), criterions[1].to(device)] | |
# reference model to compare model weights | |
model_ref = Vits(config).to(device) | |
# # pass the state to ref model | |
model_ref.load_state_dict(copy.deepcopy(model.state_dict())) | |
count = 0 | |
for param, param_ref in zip(model.parameters(), model_ref.parameters()): | |
assert (param - param_ref).sum() == 0, param | |
count = count + 1 | |
for _ in range(5): | |
batch = self._create_batch(config, 2) | |
for idx in [0, 1]: | |
outputs, loss_dict = model.train_step(batch, criterions, idx) | |
self.assertFalse(not outputs) | |
self.assertFalse(not loss_dict) | |
loss_dict["loss"].backward() | |
optimizers[idx].step() | |
optimizers[idx].zero_grad() | |
# check parameter changes | |
self._check_parameter_changes(model, model_ref) | |
def test_train_step_upsampling(self): | |
"""Upsampling by the decoder upsampling layers""" | |
# setup the model | |
with torch.autograd.set_detect_anomaly(True): | |
audio_config = VitsAudioConfig(sample_rate=22050) | |
model_args = VitsArgs( | |
num_chars=32, | |
spec_segment_size=10, | |
encoder_sample_rate=11025, | |
interpolate_z=False, | |
upsample_rates_decoder=[8, 8, 4, 2], | |
) | |
config = VitsConfig(model_args=model_args, audio=audio_config) | |
model = Vits(config).to(device) | |
model.train() | |
# model to train | |
optimizers = model.get_optimizer() | |
criterions = model.get_criterion() | |
criterions = [criterions[0].to(device), criterions[1].to(device)] | |
# reference model to compare model weights | |
model_ref = Vits(config).to(device) | |
# # pass the state to ref model | |
model_ref.load_state_dict(copy.deepcopy(model.state_dict())) | |
count = 0 | |
for param, param_ref in zip(model.parameters(), model_ref.parameters()): | |
assert (param - param_ref).sum() == 0, param | |
count = count + 1 | |
for _ in range(5): | |
batch = self._create_batch(config, 2) | |
for idx in [0, 1]: | |
outputs, loss_dict = model.train_step(batch, criterions, idx) | |
self.assertFalse(not outputs) | |
self.assertFalse(not loss_dict) | |
loss_dict["loss"].backward() | |
optimizers[idx].step() | |
optimizers[idx].zero_grad() | |
# check parameter changes | |
self._check_parameter_changes(model, model_ref) | |
def test_train_step_upsampling_interpolation(self): | |
"""Upsampling by interpolation""" | |
# setup the model | |
with torch.autograd.set_detect_anomaly(True): | |
audio_config = VitsAudioConfig(sample_rate=22050) | |
model_args = VitsArgs( | |
num_chars=32, | |
spec_segment_size=10, | |
encoder_sample_rate=11025, | |
interpolate_z=True, | |
upsample_rates_decoder=[8, 8, 2, 2], | |
) | |
config = VitsConfig(model_args=model_args, audio=audio_config) | |
model = Vits(config).to(device) | |
model.train() | |
# model to train | |
optimizers = model.get_optimizer() | |
criterions = model.get_criterion() | |
criterions = [criterions[0].to(device), criterions[1].to(device)] | |
# reference model to compare model weights | |
model_ref = Vits(config).to(device) | |
# # pass the state to ref model | |
model_ref.load_state_dict(copy.deepcopy(model.state_dict())) | |
count = 0 | |
for param, param_ref in zip(model.parameters(), model_ref.parameters()): | |
assert (param - param_ref).sum() == 0, param | |
count = count + 1 | |
for _ in range(5): | |
batch = self._create_batch(config, 2) | |
for idx in [0, 1]: | |
outputs, loss_dict = model.train_step(batch, criterions, idx) | |
self.assertFalse(not outputs) | |
self.assertFalse(not loss_dict) | |
loss_dict["loss"].backward() | |
optimizers[idx].step() | |
optimizers[idx].zero_grad() | |
# check parameter changes | |
self._check_parameter_changes(model, model_ref) | |
def test_train_eval_log(self): | |
batch_size = 2 | |
config = VitsConfig(model_args=VitsArgs(num_chars=32, spec_segment_size=10)) | |
model = Vits.init_from_config(config, verbose=False).to(device) | |
model.run_data_dep_init = False | |
model.train() | |
batch = self._create_batch(config, batch_size) | |
logger = TensorboardLogger( | |
log_dir=os.path.join(get_tests_output_path(), "dummy_vits_logs"), model_name="vits_test_train_log" | |
) | |
criterion = model.get_criterion() | |
criterion = [criterion[0].to(device), criterion[1].to(device)] | |
outputs = [None] * 2 | |
outputs[0], _ = model.train_step(batch, criterion, 0) | |
outputs[1], _ = model.train_step(batch, criterion, 1) | |
model.train_log(batch, outputs, logger, None, 1) | |
model.eval_log(batch, outputs, logger, None, 1) | |
logger.finish() | |
def test_test_run(self): | |
config = VitsConfig(model_args=VitsArgs(num_chars=32)) | |
model = Vits.init_from_config(config, verbose=False).to(device) | |
model.run_data_dep_init = False | |
model.eval() | |
test_figures, test_audios = model.test_run(None) | |
self.assertTrue(test_figures is not None) | |
self.assertTrue(test_audios is not None) | |
def test_load_checkpoint(self): | |
chkp_path = os.path.join(get_tests_output_path(), "dummy_glow_tts_checkpoint.pth") | |
config = VitsConfig(VitsArgs(num_chars=32)) | |
model = Vits.init_from_config(config, verbose=False).to(device) | |
chkp = {} | |
chkp["model"] = model.state_dict() | |
torch.save(chkp, chkp_path) | |
model.load_checkpoint(config, chkp_path) | |
self.assertTrue(model.training) | |
model.load_checkpoint(config, chkp_path, eval=True) | |
self.assertFalse(model.training) | |
def test_get_criterion(self): | |
config = VitsConfig(VitsArgs(num_chars=32)) | |
model = Vits.init_from_config(config, verbose=False).to(device) | |
criterion = model.get_criterion() | |
self.assertTrue(criterion is not None) | |
def test_init_from_config(self): | |
config = VitsConfig(model_args=VitsArgs(num_chars=32)) | |
model = Vits.init_from_config(config, verbose=False).to(device) | |
config = VitsConfig(model_args=VitsArgs(num_chars=32, num_speakers=2)) | |
model = Vits.init_from_config(config, verbose=False).to(device) | |
self.assertTrue(not hasattr(model, "emb_g")) | |
config = VitsConfig(model_args=VitsArgs(num_chars=32, num_speakers=2, use_speaker_embedding=True)) | |
model = Vits.init_from_config(config, verbose=False).to(device) | |
self.assertEqual(model.num_speakers, 2) | |
self.assertTrue(hasattr(model, "emb_g")) | |
config = VitsConfig( | |
model_args=VitsArgs( | |
num_chars=32, | |
num_speakers=2, | |
use_speaker_embedding=True, | |
speakers_file=os.path.join(get_tests_data_path(), "ljspeech", "speakers.json"), | |
) | |
) | |
model = Vits.init_from_config(config, verbose=False).to(device) | |
self.assertEqual(model.num_speakers, 10) | |
self.assertTrue(hasattr(model, "emb_g")) | |
config = VitsConfig( | |
model_args=VitsArgs( | |
num_chars=32, | |
use_d_vector_file=True, | |
d_vector_dim=256, | |
d_vector_file=[os.path.join(get_tests_data_path(), "dummy_speakers.json")], | |
) | |
) | |
model = Vits.init_from_config(config, verbose=False).to(device) | |
self.assertTrue(model.num_speakers == 1) | |
self.assertTrue(not hasattr(model, "emb_g")) | |
self.assertTrue(model.embedded_speaker_dim == config.d_vector_dim) | |