Spaces:
Runtime error
Runtime error
| from os import listdir, path | |
| import numpy as np | |
| import scipy, cv2, os, sys, argparse | |
| import dlib, json, subprocess | |
| from tqdm import tqdm | |
| from glob import glob | |
| import torch | |
| sys.path.append('../') | |
| import audio | |
| import face_detection | |
| from models import Wav2Lip | |
| parser = argparse.ArgumentParser(description='Code to generate results for test filelists') | |
| parser.add_argument('--filelist', type=str, | |
| help='Filepath of filelist file to read', required=True) | |
| parser.add_argument('--results_dir', type=str, help='Folder to save all results into', | |
| required=True) | |
| parser.add_argument('--data_root', type=str, required=True) | |
| parser.add_argument('--checkpoint_path', type=str, | |
| help='Name of saved checkpoint to load weights from', required=True) | |
| parser.add_argument('--pads', nargs='+', type=int, default=[0, 0, 0, 0], | |
| help='Padding (top, bottom, left, right)') | |
| parser.add_argument('--face_det_batch_size', type=int, | |
| help='Single GPU batch size for face detection', default=64) | |
| parser.add_argument('--wav2lip_batch_size', type=int, help='Batch size for Wav2Lip', default=128) | |
| # parser.add_argument('--resize_factor', default=1, type=int) | |
| args = parser.parse_args() | |
| args.img_size = 96 | |
| def get_smoothened_boxes(boxes, T): | |
| for i in range(len(boxes)): | |
| if i + T > len(boxes): | |
| window = boxes[len(boxes) - T:] | |
| else: | |
| window = boxes[i : i + T] | |
| boxes[i] = np.mean(window, axis=0) | |
| return boxes | |
| def face_detect(images): | |
| batch_size = args.face_det_batch_size | |
| while 1: | |
| predictions = [] | |
| try: | |
| for i in range(0, len(images), batch_size): | |
| predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size]))) | |
| except RuntimeError: | |
| if batch_size == 1: | |
| raise RuntimeError('Image too big to run face detection on GPU') | |
| batch_size //= 2 | |
| args.face_det_batch_size = batch_size | |
| print('Recovering from OOM error; New batch size: {}'.format(batch_size)) | |
| continue | |
| break | |
| results = [] | |
| pady1, pady2, padx1, padx2 = args.pads | |
| for rect, image in zip(predictions, images): | |
| if rect is None: | |
| raise ValueError('Face not detected!') | |
| y1 = max(0, rect[1] - pady1) | |
| y2 = min(image.shape[0], rect[3] + pady2) | |
| x1 = max(0, rect[0] - padx1) | |
| x2 = min(image.shape[1], rect[2] + padx2) | |
| results.append([x1, y1, x2, y2]) | |
| boxes = get_smoothened_boxes(np.array(results), T=5) | |
| results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2), True] for image, (x1, y1, x2, y2) in zip(images, boxes)] | |
| return results | |
| def datagen(frames, face_det_results, mels): | |
| img_batch, mel_batch, frame_batch, coords_batch = [], [], [], [] | |
| for i, m in enumerate(mels): | |
| if i >= len(frames): raise ValueError('Equal or less lengths only') | |
| frame_to_save = frames[i].copy() | |
| face, coords, valid_frame = face_det_results[i].copy() | |
| if not valid_frame: | |
| continue | |
| face = cv2.resize(face, (args.img_size, args.img_size)) | |
| img_batch.append(face) | |
| mel_batch.append(m) | |
| frame_batch.append(frame_to_save) | |
| coords_batch.append(coords) | |
| if len(img_batch) >= args.wav2lip_batch_size: | |
| img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch) | |
| img_masked = img_batch.copy() | |
| img_masked[:, args.img_size//2:] = 0 | |
| img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255. | |
| mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1]) | |
| yield img_batch, mel_batch, frame_batch, coords_batch | |
| img_batch, mel_batch, frame_batch, coords_batch = [], [], [], [] | |
| if len(img_batch) > 0: | |
| img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch) | |
| img_masked = img_batch.copy() | |
| img_masked[:, args.img_size//2:] = 0 | |
| img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255. | |
| mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1]) | |
| yield img_batch, mel_batch, frame_batch, coords_batch | |
| fps = 25 | |
| mel_step_size = 16 | |
| mel_idx_multiplier = 80./fps | |
| device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| print('Using {} for inference.'.format(device)) | |
| detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D, | |
| flip_input=False, device=device) | |
| def _load(checkpoint_path): | |
| if device == 'cuda': | |
| checkpoint = torch.load(checkpoint_path) | |
| else: | |
| checkpoint = torch.load(checkpoint_path, | |
| map_location=lambda storage, loc: storage) | |
| return checkpoint | |
| def load_model(path): | |
| model = Wav2Lip() | |
| print("Load checkpoint from: {}".format(path)) | |
| checkpoint = _load(path) | |
| s = checkpoint["state_dict"] | |
| new_s = {} | |
| for k, v in s.items(): | |
| new_s[k.replace('module.', '')] = v | |
| model.load_state_dict(new_s) | |
| model = model.to(device) | |
| return model.eval() | |
| model = load_model(args.checkpoint_path) | |
| def main(): | |
| assert args.data_root is not None | |
| data_root = args.data_root | |
| if not os.path.isdir(args.results_dir): os.makedirs(args.results_dir) | |
| with open(args.filelist, 'r') as filelist: | |
| lines = filelist.readlines() | |
| for idx, line in enumerate(tqdm(lines)): | |
| audio_src, video = line.strip().split() | |
| audio_src = os.path.join(data_root, audio_src) + '.mp4' | |
| video = os.path.join(data_root, video) + '.mp4' | |
| command = 'ffmpeg -loglevel panic -y -i {} -strict -2 {}'.format(audio_src, '../temp/temp.wav') | |
| subprocess.call(command, shell=True) | |
| temp_audio = '../temp/temp.wav' | |
| wav = audio.load_wav(temp_audio, 16000) | |
| mel = audio.melspectrogram(wav) | |
| if np.isnan(mel.reshape(-1)).sum() > 0: | |
| continue | |
| mel_chunks = [] | |
| i = 0 | |
| while 1: | |
| start_idx = int(i * mel_idx_multiplier) | |
| if start_idx + mel_step_size > len(mel[0]): | |
| break | |
| mel_chunks.append(mel[:, start_idx : start_idx + mel_step_size]) | |
| i += 1 | |
| video_stream = cv2.VideoCapture(video) | |
| full_frames = [] | |
| while 1: | |
| still_reading, frame = video_stream.read() | |
| if not still_reading or len(full_frames) > len(mel_chunks): | |
| video_stream.release() | |
| break | |
| full_frames.append(frame) | |
| if len(full_frames) < len(mel_chunks): | |
| continue | |
| full_frames = full_frames[:len(mel_chunks)] | |
| try: | |
| face_det_results = face_detect(full_frames.copy()) | |
| except ValueError as e: | |
| continue | |
| batch_size = args.wav2lip_batch_size | |
| gen = datagen(full_frames.copy(), face_det_results, mel_chunks) | |
| for i, (img_batch, mel_batch, frames, coords) in enumerate(gen): | |
| if i == 0: | |
| frame_h, frame_w = full_frames[0].shape[:-1] | |
| out = cv2.VideoWriter('../temp/result.avi', | |
| cv2.VideoWriter_fourcc(*'DIVX'), fps, (frame_w, frame_h)) | |
| img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device) | |
| mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device) | |
| with torch.no_grad(): | |
| pred = model(mel_batch, img_batch) | |
| pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255. | |
| for pl, f, c in zip(pred, frames, coords): | |
| y1, y2, x1, x2 = c | |
| pl = cv2.resize(pl.astype(np.uint8), (x2 - x1, y2 - y1)) | |
| f[y1:y2, x1:x2] = pl | |
| out.write(f) | |
| out.release() | |
| vid = os.path.join(args.results_dir, '{}.mp4'.format(idx)) | |
| command = 'ffmpeg -loglevel panic -y -i {} -i {} -strict -2 -q:v 1 {}'.format(temp_audio, | |
| '../temp/result.avi', vid) | |
| subprocess.call(command, shell=True) | |
| if __name__ == '__main__': | |
| main() | |