Spaces:
Runtime error
Runtime error
| import glob | |
| import os | |
| import shutil | |
| from tests import get_device_id, get_tests_output_path, run_cli | |
| from TTS.config.shared_configs import BaseAudioConfig | |
| from TTS.encoder.configs.speaker_encoder_config import SpeakerEncoderConfig | |
| def run_test_train(): | |
| command = ( | |
| f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_encoder.py --config_path {config_path} " | |
| f"--coqpit.output_path {output_path} " | |
| "--coqpit.datasets.0.formatter ljspeech_test " | |
| "--coqpit.datasets.0.meta_file_train metadata.csv " | |
| "--coqpit.datasets.0.meta_file_val metadata.csv " | |
| "--coqpit.datasets.0.path tests/data/ljspeech " | |
| ) | |
| run_cli(command) | |
| config_path = os.path.join(get_tests_output_path(), "test_speaker_encoder_config.json") | |
| output_path = os.path.join(get_tests_output_path(), "train_outputs") | |
| config = SpeakerEncoderConfig( | |
| batch_size=4, | |
| num_classes_in_batch=4, | |
| num_utter_per_class=2, | |
| eval_num_classes_in_batch=4, | |
| eval_num_utter_per_class=2, | |
| num_loader_workers=1, | |
| epochs=1, | |
| print_step=1, | |
| save_step=2, | |
| print_eval=True, | |
| run_eval=True, | |
| audio=BaseAudioConfig(num_mels=80), | |
| ) | |
| config.audio.do_trim_silence = True | |
| config.audio.trim_db = 60 | |
| config.loss = "ge2e" | |
| config.save_json(config_path) | |
| print(config) | |
| # train the model for one epoch | |
| run_test_train() | |
| # Find latest folder | |
| continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime) | |
| # restore the model and continue training for one more epoch | |
| command_train = ( | |
| f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_encoder.py --continue_path {continue_path} " | |
| ) | |
| run_cli(command_train) | |
| shutil.rmtree(continue_path) | |
| # test resnet speaker encoder | |
| config.model_params["model_name"] = "resnet" | |
| config.save_json(config_path) | |
| # train the model for one epoch | |
| run_test_train() | |
| # Find latest folder | |
| continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime) | |
| # restore the model and continue training for one more epoch | |
| command_train = ( | |
| f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_encoder.py --continue_path {continue_path} " | |
| ) | |
| run_cli(command_train) | |
| shutil.rmtree(continue_path) | |
| # test model with ge2e loss function | |
| # config.loss = "ge2e" | |
| # config.save_json(config_path) | |
| # run_test_train() | |
| # test model with angleproto loss function | |
| # config.loss = "angleproto" | |
| # config.save_json(config_path) | |
| # run_test_train() | |
| # test model with softmaxproto loss function | |
| config.loss = "softmaxproto" | |
| config.save_json(config_path) | |
| run_test_train() | |