Spaces:
Running
on
Zero
Running
on
Zero
import random | |
import numpy as np | |
import torch | |
from TTS.vocoder.configs import WavernnConfig | |
from TTS.vocoder.models.wavernn import Wavernn, WavernnArgs | |
def test_wavernn(): | |
config = WavernnConfig() | |
config.model_args = WavernnArgs( | |
rnn_dims=512, | |
fc_dims=512, | |
mode="mold", | |
mulaw=False, | |
pad=2, | |
use_aux_net=True, | |
use_upsample_net=True, | |
upsample_factors=[4, 8, 8], | |
feat_dims=80, | |
compute_dims=128, | |
res_out_dims=128, | |
num_res_blocks=10, | |
) | |
config.audio.hop_length = 256 | |
config.audio.sample_rate = 2048 | |
dummy_x = torch.rand((2, 1280)) | |
dummy_m = torch.rand((2, 80, 9)) | |
y_size = random.randrange(20, 60) | |
dummy_y = torch.rand((80, y_size)) | |
# mode: mold | |
model = Wavernn(config) | |
output = model(dummy_x, dummy_m) | |
assert np.all(output.shape == (2, 1280, 30)), output.shape | |
# mode: gauss | |
config.model_args.mode = "gauss" | |
model = Wavernn(config) | |
output = model(dummy_x, dummy_m) | |
assert np.all(output.shape == (2, 1280, 2)), output.shape | |
# mode: quantized | |
config.model_args.mode = 4 | |
model = Wavernn(config) | |
output = model(dummy_x, dummy_m) | |
assert np.all(output.shape == (2, 1280, 2**4)), output.shape | |
output = model.inference(dummy_y, True, 5500, 550) | |
assert np.all(output.shape == (256 * (y_size - 1),)) | |