video-dubbing / TTS /tests /tts_tests2 /test_forward_tts.py
artificialguybr's picture
Upload 659 files
46a75d7
import torch as T
from TTS.tts.models.forward_tts import ForwardTTS, ForwardTTSArgs
from TTS.tts.utils.helpers import sequence_mask
# pylint: disable=unused-variable
def expand_encoder_outputs_test():
model = ForwardTTS(ForwardTTSArgs(num_chars=10))
inputs = T.rand(2, 5, 57)
durations = T.randint(1, 4, (2, 57))
x_mask = T.ones(2, 1, 57)
y_mask = T.ones(2, 1, durations.sum(1).max())
expanded, _ = model.expand_encoder_outputs(inputs, durations, x_mask, y_mask)
for b in range(durations.shape[0]):
index = 0
for idx, dur in enumerate(durations[b]):
diff = (
expanded[b, :, index : index + dur.item()]
- inputs[b, :, idx].repeat(dur.item()).view(expanded[b, :, index : index + dur.item()].shape)
).sum()
assert abs(diff) < 1e-6, diff
index += dur
def model_input_output_test():
"""Assert the output shapes of the model in different modes"""
# VANILLA MODEL
model = ForwardTTS(ForwardTTSArgs(num_chars=10, use_pitch=False, use_aligner=False))
x = T.randint(0, 10, (2, 21))
x_lengths = T.randint(10, 22, (2,))
x_lengths[-1] = 21
x_mask = sequence_mask(x_lengths).unsqueeze(1).long()
durations = T.randint(1, 4, (2, 21))
durations = durations * x_mask.squeeze(1)
y_lengths = durations.sum(1)
y_mask = sequence_mask(y_lengths).unsqueeze(1).long()
outputs = model.forward(x, x_lengths, y_lengths, dr=durations)
assert outputs["model_outputs"].shape == (2, durations.sum(1).max(), 80)
assert outputs["durations_log"].shape == (2, 21)
assert outputs["durations"].shape == (2, 21)
assert outputs["alignments"].shape == (2, durations.sum(1).max(), 21)
assert (outputs["x_mask"] - x_mask).sum() == 0.0
assert (outputs["y_mask"] - y_mask).sum() == 0.0
assert outputs["alignment_soft"] is None
assert outputs["alignment_mas"] is None
assert outputs["alignment_logprob"] is None
assert outputs["o_alignment_dur"] is None
assert outputs["pitch_avg"] is None
assert outputs["pitch_avg_gt"] is None
# USE PITCH
model = ForwardTTS(ForwardTTSArgs(num_chars=10, use_pitch=True, use_aligner=False))
x = T.randint(0, 10, (2, 21))
x_lengths = T.randint(10, 22, (2,))
x_lengths[-1] = 21
x_mask = sequence_mask(x_lengths).unsqueeze(1).long()
durations = T.randint(1, 4, (2, 21))
durations = durations * x_mask.squeeze(1)
y_lengths = durations.sum(1)
y_mask = sequence_mask(y_lengths).unsqueeze(1).long()
pitch = T.rand(2, 1, y_lengths.max())
outputs = model.forward(x, x_lengths, y_lengths, dr=durations, pitch=pitch)
assert outputs["model_outputs"].shape == (2, durations.sum(1).max(), 80)
assert outputs["durations_log"].shape == (2, 21)
assert outputs["durations"].shape == (2, 21)
assert outputs["alignments"].shape == (2, durations.sum(1).max(), 21)
assert (outputs["x_mask"] - x_mask).sum() == 0.0
assert (outputs["y_mask"] - y_mask).sum() == 0.0
assert outputs["pitch_avg"].shape == (2, 1, 21)
assert outputs["pitch_avg_gt"].shape == (2, 1, 21)
assert outputs["alignment_soft"] is None
assert outputs["alignment_mas"] is None
assert outputs["alignment_logprob"] is None
assert outputs["o_alignment_dur"] is None
# USE ALIGNER NETWORK
model = ForwardTTS(ForwardTTSArgs(num_chars=10, use_pitch=False, use_aligner=True))
x = T.randint(0, 10, (2, 21))
x_lengths = T.randint(10, 22, (2,))
x_lengths[-1] = 21
x_mask = sequence_mask(x_lengths).unsqueeze(1).long()
durations = T.randint(1, 4, (2, 21))
durations = durations * x_mask.squeeze(1)
y_lengths = durations.sum(1)
y_mask = sequence_mask(y_lengths).unsqueeze(1).long()
y = T.rand(2, y_lengths.max(), 80)
outputs = model.forward(x, x_lengths, y_lengths, dr=durations, y=y)
assert outputs["model_outputs"].shape == (2, durations.sum(1).max(), 80)
assert outputs["durations_log"].shape == (2, 21)
assert outputs["durations"].shape == (2, 21)
assert outputs["alignments"].shape == (2, durations.sum(1).max(), 21)
assert (outputs["x_mask"] - x_mask).sum() == 0.0
assert (outputs["y_mask"] - y_mask).sum() == 0.0
assert outputs["alignment_soft"].shape == (2, durations.sum(1).max(), 21)
assert outputs["alignment_mas"].shape == (2, durations.sum(1).max(), 21)
assert outputs["alignment_logprob"].shape == (2, 1, durations.sum(1).max(), 21)
assert outputs["o_alignment_dur"].shape == (2, 21)
assert outputs["pitch_avg"] is None
assert outputs["pitch_avg_gt"] is None
# USE ALIGNER NETWORK AND PITCH
model = ForwardTTS(ForwardTTSArgs(num_chars=10, use_pitch=True, use_aligner=True))
x = T.randint(0, 10, (2, 21))
x_lengths = T.randint(10, 22, (2,))
x_lengths[-1] = 21
x_mask = sequence_mask(x_lengths).unsqueeze(1).long()
durations = T.randint(1, 4, (2, 21))
durations = durations * x_mask.squeeze(1)
y_lengths = durations.sum(1)
y_mask = sequence_mask(y_lengths).unsqueeze(1).long()
y = T.rand(2, y_lengths.max(), 80)
pitch = T.rand(2, 1, y_lengths.max())
outputs = model.forward(x, x_lengths, y_lengths, dr=durations, pitch=pitch, y=y)
assert outputs["model_outputs"].shape == (2, durations.sum(1).max(), 80)
assert outputs["durations_log"].shape == (2, 21)
assert outputs["durations"].shape == (2, 21)
assert outputs["alignments"].shape == (2, durations.sum(1).max(), 21)
assert (outputs["x_mask"] - x_mask).sum() == 0.0
assert (outputs["y_mask"] - y_mask).sum() == 0.0
assert outputs["alignment_soft"].shape == (2, durations.sum(1).max(), 21)
assert outputs["alignment_mas"].shape == (2, durations.sum(1).max(), 21)
assert outputs["alignment_logprob"].shape == (2, 1, durations.sum(1).max(), 21)
assert outputs["o_alignment_dur"].shape == (2, 21)
assert outputs["pitch_avg"].shape == (2, 1, 21)
assert outputs["pitch_avg_gt"].shape == (2, 1, 21)