artificialguybr's picture
Upload 659 files
46a75d7
import os
import shutil
import unittest
import numpy as np
import torch
from torch.utils.data import DataLoader
from tests import get_tests_data_path, get_tests_output_path
from TTS.tts.configs.shared_configs import BaseDatasetConfig, BaseTTSConfig
from TTS.tts.datasets import TTSDataset, load_tts_samples
from TTS.tts.utils.text.tokenizer import TTSTokenizer
from TTS.utils.audio import AudioProcessor
# pylint: disable=unused-variable
OUTPATH = os.path.join(get_tests_output_path(), "loader_tests/")
os.makedirs(OUTPATH, exist_ok=True)
# create a dummy config for testing data loaders.
c = BaseTTSConfig(text_cleaner="english_cleaners", num_loader_workers=0, batch_size=2, use_noise_augment=False)
c.r = 5
c.data_path = os.path.join(get_tests_data_path(), "ljspeech/")
ok_ljspeech = os.path.exists(c.data_path)
dataset_config = BaseDatasetConfig(
formatter="ljspeech_test", # ljspeech_test to multi-speaker
meta_file_train="metadata.csv",
meta_file_val=None,
path=c.data_path,
language="en",
)
DATA_EXIST = True
if not os.path.exists(c.data_path):
DATA_EXIST = False
print(" > Dynamic data loader test: {}".format(DATA_EXIST))
class TestTTSDataset(unittest.TestCase):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.max_loader_iter = 4
self.ap = AudioProcessor(**c.audio)
def _create_dataloader(self, batch_size, r, bgs, start_by_longest=False):
# load dataset
meta_data_train, meta_data_eval = load_tts_samples(dataset_config, eval_split=True, eval_split_size=0.2)
items = meta_data_train + meta_data_eval
tokenizer, _ = TTSTokenizer.init_from_config(c)
dataset = TTSDataset(
outputs_per_step=r,
compute_linear_spec=True,
return_wav=True,
tokenizer=tokenizer,
ap=self.ap,
samples=items,
batch_group_size=bgs,
min_text_len=c.min_text_len,
max_text_len=c.max_text_len,
min_audio_len=c.min_audio_len,
max_audio_len=c.max_audio_len,
start_by_longest=start_by_longest,
)
dataloader = DataLoader(
dataset,
batch_size=batch_size,
shuffle=False,
collate_fn=dataset.collate_fn,
drop_last=True,
num_workers=c.num_loader_workers,
)
return dataloader, dataset
def test_loader(self):
if ok_ljspeech:
dataloader, dataset = self._create_dataloader(1, 1, 0)
for i, data in enumerate(dataloader):
if i == self.max_loader_iter:
break
text_input = data["token_id"]
_ = data["token_id_lengths"]
speaker_name = data["speaker_names"]
linear_input = data["linear"]
mel_input = data["mel"]
mel_lengths = data["mel_lengths"]
_ = data["stop_targets"]
_ = data["item_idxs"]
wavs = data["waveform"]
neg_values = text_input[text_input < 0]
check_count = len(neg_values)
# check basic conditions
self.assertEqual(check_count, 0)
self.assertEqual(linear_input.shape[0], mel_input.shape[0], c.batch_size)
self.assertEqual(linear_input.shape[2], self.ap.fft_size // 2 + 1)
self.assertEqual(mel_input.shape[2], c.audio["num_mels"])
self.assertEqual(wavs.shape[1], mel_input.shape[1] * c.audio.hop_length)
self.assertIsInstance(speaker_name[0], str)
# make sure that the computed mels and the waveform match and correctly computed
mel_new = self.ap.melspectrogram(wavs[0].squeeze().numpy())
# remove padding in mel-spectrogram
mel_dataloader = mel_input[0].T.numpy()[:, : mel_lengths[0]]
# guarantee that both mel-spectrograms have the same size and that we will remove waveform padding
mel_new = mel_new[:, : mel_lengths[0]]
ignore_seg = -(1 + c.audio.win_length // c.audio.hop_length)
mel_diff = (mel_new[:, : mel_input.shape[1]] - mel_input[0].T.numpy())[:, 0:ignore_seg]
self.assertLess(abs(mel_diff.sum()), 1e-5)
# check normalization ranges
if self.ap.symmetric_norm:
self.assertLessEqual(mel_input.max(), self.ap.max_norm)
self.assertGreaterEqual(
mel_input.min(), -self.ap.max_norm # pylint: disable=invalid-unary-operand-type
)
self.assertLess(mel_input.min(), 0)
else:
self.assertLessEqual(mel_input.max(), self.ap.max_norm)
self.assertGreaterEqual(mel_input.min(), 0)
def test_batch_group_shuffle(self):
if ok_ljspeech:
dataloader, dataset = self._create_dataloader(2, c.r, 16)
last_length = 0
frames = dataset.samples
for i, data in enumerate(dataloader):
if i == self.max_loader_iter:
break
mel_lengths = data["mel_lengths"]
avg_length = mel_lengths.numpy().mean()
dataloader.dataset.preprocess_samples()
is_items_reordered = False
for idx, item in enumerate(dataloader.dataset.samples):
if item != frames[idx]:
is_items_reordered = True
break
self.assertGreaterEqual(avg_length, last_length)
self.assertTrue(is_items_reordered)
def test_start_by_longest(self):
"""Test start_by_longest option.
Ther first item of the fist batch must be longer than all the other items.
"""
if ok_ljspeech:
dataloader, _ = self._create_dataloader(2, c.r, 0, True)
dataloader.dataset.preprocess_samples()
for i, data in enumerate(dataloader):
if i == self.max_loader_iter:
break
mel_lengths = data["mel_lengths"]
if i == 0:
max_len = mel_lengths[0]
print(mel_lengths)
self.assertTrue(all(max_len >= mel_lengths))
def test_padding_and_spectrograms(self):
def check_conditions(idx, linear_input, mel_input, stop_target, mel_lengths):
self.assertNotEqual(linear_input[idx, -1].sum(), 0) # check padding
self.assertNotEqual(linear_input[idx, -2].sum(), 0)
self.assertNotEqual(mel_input[idx, -1].sum(), 0)
self.assertNotEqual(mel_input[idx, -2].sum(), 0)
self.assertEqual(stop_target[idx, -1], 1)
self.assertEqual(stop_target[idx, -2], 0)
self.assertEqual(stop_target[idx].sum(), 1)
self.assertEqual(len(mel_lengths.shape), 1)
self.assertEqual(mel_lengths[idx], linear_input[idx].shape[0])
self.assertEqual(mel_lengths[idx], mel_input[idx].shape[0])
if ok_ljspeech:
dataloader, _ = self._create_dataloader(1, 1, 0)
for i, data in enumerate(dataloader):
if i == self.max_loader_iter:
break
linear_input = data["linear"]
mel_input = data["mel"]
mel_lengths = data["mel_lengths"]
stop_target = data["stop_targets"]
item_idx = data["item_idxs"]
# check mel_spec consistency
wav = np.asarray(self.ap.load_wav(item_idx[0]), dtype=np.float32)
mel = self.ap.melspectrogram(wav).astype("float32")
mel = torch.FloatTensor(mel).contiguous()
mel_dl = mel_input[0]
# NOTE: Below needs to check == 0 but due to an unknown reason
# there is a slight difference between two matrices.
# TODO: Check this assert cond more in detail.
self.assertLess(abs(mel.T - mel_dl).max(), 1e-5)
# check mel-spec correctness
mel_spec = mel_input[0].cpu().numpy()
wav = self.ap.inv_melspectrogram(mel_spec.T)
self.ap.save_wav(wav, OUTPATH + "/mel_inv_dataloader.wav")
shutil.copy(item_idx[0], OUTPATH + "/mel_target_dataloader.wav")
# check linear-spec
linear_spec = linear_input[0].cpu().numpy()
wav = self.ap.inv_spectrogram(linear_spec.T)
self.ap.save_wav(wav, OUTPATH + "/linear_inv_dataloader.wav")
shutil.copy(item_idx[0], OUTPATH + "/linear_target_dataloader.wav")
# check the outputs
check_conditions(0, linear_input, mel_input, stop_target, mel_lengths)
# Test for batch size 2
dataloader, _ = self._create_dataloader(2, 1, 0)
for i, data in enumerate(dataloader):
if i == self.max_loader_iter:
break
linear_input = data["linear"]
mel_input = data["mel"]
mel_lengths = data["mel_lengths"]
stop_target = data["stop_targets"]
item_idx = data["item_idxs"]
# set id to the longest sequence in the batch
if mel_lengths[0] > mel_lengths[1]:
idx = 0
else:
idx = 1
# check the longer item in the batch
check_conditions(idx, linear_input, mel_input, stop_target, mel_lengths)
# check the other item in the batch
self.assertEqual(linear_input[1 - idx, -1].sum(), 0)
self.assertEqual(mel_input[1 - idx, -1].sum(), 0)
self.assertEqual(stop_target[1, mel_lengths[1] - 1], 1)
self.assertEqual(stop_target[1, mel_lengths[1] :].sum(), stop_target.shape[1] - mel_lengths[1])
self.assertEqual(len(mel_lengths.shape), 1)
# check batch zero-frame conditions (zero-frame disabled)
# assert (linear_input * stop_target.unsqueeze(2)).sum() == 0
# assert (mel_input * stop_target.unsqueeze(2)).sum() == 0