Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/env python3` | |
import glob | |
import os | |
import shutil | |
import torch | |
from tests import get_tests_data_path, get_tests_output_path, run_cli | |
from TTS.tts.utils.languages import LanguageManager | |
from TTS.tts.utils.speakers import SpeakerManager | |
from TTS.utils.generic_utils import get_user_data_dir | |
from TTS.utils.manage import ModelManager | |
MODELS_WITH_SEP_TESTS = [ | |
"tts_models/multilingual/multi-dataset/bark", | |
"tts_models/en/multi-dataset/tortoise-v2", | |
"tts_models/multilingual/multi-dataset/xtts_v1.1", | |
"tts_models/multilingual/multi-dataset/xtts_v2", | |
] | |
def run_models(offset=0, step=1): | |
"""Check if all the models are downloadable and tts models run correctly.""" | |
print(" > Run synthesizer with all the models.") | |
output_path = os.path.join(get_tests_output_path(), "output.wav") | |
manager = ModelManager(output_prefix=get_tests_output_path(), progress_bar=False) | |
model_names = [name for name in manager.list_models() if name not in MODELS_WITH_SEP_TESTS] | |
print("Model names:", model_names) | |
for model_name in model_names[offset::step]: | |
print(f"\n > Run - {model_name}") | |
model_path, _, _ = manager.download_model(model_name) | |
if "tts_models" in model_name: | |
local_download_dir = os.path.dirname(model_path) | |
# download and run the model | |
speaker_files = glob.glob(local_download_dir + "/speaker*") | |
language_files = glob.glob(local_download_dir + "/language*") | |
language_id = "" | |
if len(speaker_files) > 0: | |
# multi-speaker model | |
if "speaker_ids" in speaker_files[0]: | |
speaker_manager = SpeakerManager(speaker_id_file_path=speaker_files[0]) | |
elif "speakers" in speaker_files[0]: | |
speaker_manager = SpeakerManager(d_vectors_file_path=speaker_files[0]) | |
# multi-lingual model - Assuming multi-lingual models are also multi-speaker | |
if len(language_files) > 0 and "language_ids" in language_files[0]: | |
language_manager = LanguageManager(language_ids_file_path=language_files[0]) | |
language_id = language_manager.language_names[0] | |
speaker_id = list(speaker_manager.name_to_id.keys())[0] | |
run_cli( | |
f"tts --model_name {model_name} " | |
f'--text "This is an example." --out_path "{output_path}" --speaker_idx "{speaker_id}" --language_idx "{language_id}" --progress_bar False' | |
) | |
else: | |
# single-speaker model | |
run_cli( | |
f"tts --model_name {model_name} " | |
f'--text "This is an example." --out_path "{output_path}" --progress_bar False' | |
) | |
# remove downloaded models | |
shutil.rmtree(local_download_dir) | |
shutil.rmtree(get_user_data_dir("tts")) | |
elif "voice_conversion_models" in model_name: | |
speaker_wav = os.path.join(get_tests_data_path(), "ljspeech", "wavs", "LJ001-0001.wav") | |
reference_wav = os.path.join(get_tests_data_path(), "ljspeech", "wavs", "LJ001-0032.wav") | |
run_cli( | |
f"tts --model_name {model_name} " | |
f'--out_path "{output_path}" --source_wav "{speaker_wav}" --target_wav "{reference_wav}" --progress_bar False' | |
) | |
else: | |
# only download the model | |
manager.download_model(model_name) | |
print(f" | > OK: {model_name}") | |
def test_xtts(): | |
"""XTTS is too big to run on github actions. We need to test it locally""" | |
output_path = os.path.join(get_tests_output_path(), "output.wav") | |
speaker_wav = os.path.join(get_tests_data_path(), "ljspeech", "wavs", "LJ001-0001.wav") | |
use_gpu = torch.cuda.is_available() | |
if use_gpu: | |
run_cli( | |
"yes | " | |
f"tts --model_name tts_models/multilingual/multi-dataset/xtts_v1.1 " | |
f'--text "This is an example." --out_path "{output_path}" --progress_bar False --use_cuda True ' | |
f'--speaker_wav "{speaker_wav}" --language_idx "en"' | |
) | |
else: | |
run_cli( | |
"yes | " | |
f"tts --model_name tts_models/multilingual/multi-dataset/xtts_v1.1 " | |
f'--text "This is an example." --out_path "{output_path}" --progress_bar False ' | |
f'--speaker_wav "{speaker_wav}" --language_idx "en"' | |
) | |
def test_xtts_streaming(): | |
"""Testing the new inference_stream method""" | |
from TTS.tts.configs.xtts_config import XttsConfig | |
from TTS.tts.models.xtts import Xtts | |
speaker_wav = [os.path.join(get_tests_data_path(), "ljspeech", "wavs", "LJ001-0001.wav")] | |
speaker_wav_2 = os.path.join(get_tests_data_path(), "ljspeech", "wavs", "LJ001-0002.wav") | |
speaker_wav.append(speaker_wav_2) | |
model_path = os.path.join(get_user_data_dir("tts"), "tts_models--multilingual--multi-dataset--xtts_v1.1") | |
config = XttsConfig() | |
config.load_json(os.path.join(model_path, "config.json")) | |
model = Xtts.init_from_config(config) | |
model.load_checkpoint(config, checkpoint_dir=model_path) | |
model.to(torch.device("cuda" if torch.cuda.is_available() else "cpu")) | |
print("Computing speaker latents...") | |
gpt_cond_latent, _, speaker_embedding = model.get_conditioning_latents(audio_path=speaker_wav) | |
print("Inference...") | |
chunks = model.inference_stream( | |
"It took me quite a long time to develop a voice and now that I have it I am not going to be silent.", | |
"en", | |
gpt_cond_latent, | |
speaker_embedding, | |
) | |
wav_chuncks = [] | |
for i, chunk in enumerate(chunks): | |
if i == 0: | |
assert chunk.shape[-1] > 5000 | |
wav_chuncks.append(chunk) | |
assert len(wav_chuncks) > 1 | |
def test_xtts_v2(): | |
"""XTTS is too big to run on github actions. We need to test it locally""" | |
output_path = os.path.join(get_tests_output_path(), "output.wav") | |
speaker_wav = os.path.join(get_tests_data_path(), "ljspeech", "wavs", "LJ001-0001.wav") | |
speaker_wav_2 = os.path.join(get_tests_data_path(), "ljspeech", "wavs", "LJ001-0002.wav") | |
use_gpu = torch.cuda.is_available() | |
if use_gpu: | |
run_cli( | |
"yes | " | |
f"tts --model_name tts_models/multilingual/multi-dataset/xtts_v2 " | |
f'--text "This is an example." --out_path "{output_path}" --progress_bar False --use_cuda True ' | |
f'--speaker_wav "{speaker_wav}" "{speaker_wav_2}" "--language_idx "en"' | |
) | |
else: | |
run_cli( | |
"yes | " | |
f"tts --model_name tts_models/multilingual/multi-dataset/xtts_v2 " | |
f'--text "This is an example." --out_path "{output_path}" --progress_bar False ' | |
f'--speaker_wav "{speaker_wav}" "{speaker_wav_2}" --language_idx "en"' | |
) | |
def test_xtts_v2_streaming(): | |
"""Testing the new inference_stream method""" | |
from TTS.tts.configs.xtts_config import XttsConfig | |
from TTS.tts.models.xtts import Xtts | |
speaker_wav = [os.path.join(get_tests_data_path(), "ljspeech", "wavs", "LJ001-0001.wav")] | |
model_path = os.path.join(get_user_data_dir("tts"), "tts_models--multilingual--multi-dataset--xtts_v2") | |
config = XttsConfig() | |
config.load_json(os.path.join(model_path, "config.json")) | |
model = Xtts.init_from_config(config) | |
model.load_checkpoint(config, checkpoint_dir=model_path) | |
model.to(torch.device("cuda" if torch.cuda.is_available() else "cpu")) | |
print("Computing speaker latents...") | |
gpt_cond_latent, _, speaker_embedding = model.get_conditioning_latents(audio_path=speaker_wav) | |
print("Inference...") | |
chunks = model.inference_stream( | |
"It took me quite a long time to develop a voice and now that I have it I am not going to be silent.", | |
"en", | |
gpt_cond_latent, | |
speaker_embedding, | |
) | |
wav_chuncks = [] | |
for i, chunk in enumerate(chunks): | |
if i == 0: | |
assert chunk.shape[-1] > 5000 | |
wav_chuncks.append(chunk) | |
assert len(wav_chuncks) > 1 | |
def test_tortoise(): | |
output_path = os.path.join(get_tests_output_path(), "output.wav") | |
use_gpu = torch.cuda.is_available() | |
if use_gpu: | |
run_cli( | |
f" tts --model_name tts_models/en/multi-dataset/tortoise-v2 " | |
f'--text "This is an example." --out_path "{output_path}" --progress_bar False --use_cuda True' | |
) | |
else: | |
run_cli( | |
f" tts --model_name tts_models/en/multi-dataset/tortoise-v2 " | |
f'--text "This is an example." --out_path "{output_path}" --progress_bar False' | |
) | |
def test_bark(): | |
"""Bark is too big to run on github actions. We need to test it locally""" | |
output_path = os.path.join(get_tests_output_path(), "output.wav") | |
use_gpu = torch.cuda.is_available() | |
if use_gpu: | |
run_cli( | |
f" tts --model_name tts_models/multilingual/multi-dataset/bark " | |
f'--text "This is an example." --out_path "{output_path}" --progress_bar False --use_cuda True' | |
) | |
else: | |
run_cli( | |
f" tts --model_name tts_models/multilingual/multi-dataset/bark " | |
f'--text "This is an example." --out_path "{output_path}" --progress_bar False' | |
) | |
def test_voice_conversion(): | |
print(" > Run voice conversion inference using YourTTS model.") | |
model_name = "tts_models/multilingual/multi-dataset/your_tts" | |
language_id = "en" | |
speaker_wav = os.path.join(get_tests_data_path(), "ljspeech", "wavs", "LJ001-0001.wav") | |
reference_wav = os.path.join(get_tests_data_path(), "ljspeech", "wavs", "LJ001-0032.wav") | |
output_path = os.path.join(get_tests_output_path(), "output.wav") | |
run_cli( | |
f"tts --model_name {model_name}" | |
f" --out_path {output_path} --speaker_wav {speaker_wav} --reference_wav {reference_wav} --language_idx {language_id} --progress_bar False" | |
) | |
""" | |
These are used to split tests into different actions on Github. | |
""" | |
def test_models_offset_0_step_3(): | |
run_models(offset=0, step=3) | |
def test_models_offset_1_step_3(): | |
run_models(offset=1, step=3) | |
def test_models_offset_2_step_3(): | |
run_models(offset=2, step=3) | |