Spaces:
Running
on
Zero
Running
on
Zero
import functools | |
import random | |
import unittest | |
import torch | |
from TTS.config.shared_configs import BaseDatasetConfig | |
from TTS.tts.datasets import load_tts_samples | |
from TTS.tts.utils.data import get_length_balancer_weights | |
from TTS.tts.utils.languages import get_language_balancer_weights | |
from TTS.tts.utils.speakers import get_speaker_balancer_weights | |
from TTS.utils.samplers import BucketBatchSampler, PerfectBatchSampler | |
# Fixing random state to avoid random fails | |
torch.manual_seed(0) | |
dataset_config_en = BaseDatasetConfig( | |
formatter="ljspeech", | |
meta_file_train="metadata.csv", | |
meta_file_val="metadata.csv", | |
path="tests/data/ljspeech", | |
language="en", | |
) | |
dataset_config_pt = BaseDatasetConfig( | |
formatter="ljspeech", | |
meta_file_train="metadata.csv", | |
meta_file_val="metadata.csv", | |
path="tests/data/ljspeech", | |
language="pt-br", | |
) | |
# Adding the EN samples twice to create a language unbalanced dataset | |
train_samples, eval_samples = load_tts_samples( | |
[dataset_config_en, dataset_config_en, dataset_config_pt], eval_split=True | |
) | |
# gerenate a speaker unbalanced dataset | |
for i, sample in enumerate(train_samples): | |
if i < 5: | |
sample["speaker_name"] = "ljspeech-0" | |
else: | |
sample["speaker_name"] = "ljspeech-1" | |
def is_balanced(lang_1, lang_2): | |
return 0.85 < lang_1 / lang_2 < 1.2 | |
class TestSamplers(unittest.TestCase): | |
def test_language_random_sampler(self): # pylint: disable=no-self-use | |
random_sampler = torch.utils.data.RandomSampler(train_samples) | |
ids = functools.reduce(lambda a, b: a + b, [list(random_sampler) for i in range(100)]) | |
en, pt = 0, 0 | |
for index in ids: | |
if train_samples[index]["language"] == "en": | |
en += 1 | |
else: | |
pt += 1 | |
assert not is_balanced(en, pt), "Random sampler is supposed to be unbalanced" | |
def test_language_weighted_random_sampler(self): # pylint: disable=no-self-use | |
weighted_sampler = torch.utils.data.sampler.WeightedRandomSampler( | |
get_language_balancer_weights(train_samples), len(train_samples) | |
) | |
ids = functools.reduce(lambda a, b: a + b, [list(weighted_sampler) for i in range(100)]) | |
en, pt = 0, 0 | |
for index in ids: | |
if train_samples[index]["language"] == "en": | |
en += 1 | |
else: | |
pt += 1 | |
assert is_balanced(en, pt), "Language Weighted sampler is supposed to be balanced" | |
def test_speaker_weighted_random_sampler(self): # pylint: disable=no-self-use | |
weighted_sampler = torch.utils.data.sampler.WeightedRandomSampler( | |
get_speaker_balancer_weights(train_samples), len(train_samples) | |
) | |
ids = functools.reduce(lambda a, b: a + b, [list(weighted_sampler) for i in range(100)]) | |
spk1, spk2 = 0, 0 | |
for index in ids: | |
if train_samples[index]["speaker_name"] == "ljspeech-0": | |
spk1 += 1 | |
else: | |
spk2 += 1 | |
assert is_balanced(spk1, spk2), "Speaker Weighted sampler is supposed to be balanced" | |
def test_perfect_sampler(self): # pylint: disable=no-self-use | |
classes = set() | |
for item in train_samples: | |
classes.add(item["speaker_name"]) | |
sampler = PerfectBatchSampler( | |
train_samples, | |
classes, | |
batch_size=2 * 3, # total batch size | |
num_classes_in_batch=2, | |
label_key="speaker_name", | |
shuffle=False, | |
drop_last=True, | |
) | |
batchs = functools.reduce(lambda a, b: a + b, [list(sampler) for i in range(100)]) | |
for batch in batchs: | |
spk1, spk2 = 0, 0 | |
# for in each batch | |
for index in batch: | |
if train_samples[index]["speaker_name"] == "ljspeech-0": | |
spk1 += 1 | |
else: | |
spk2 += 1 | |
assert spk1 == spk2, "PerfectBatchSampler is supposed to be perfectly balanced" | |
def test_perfect_sampler_shuffle(self): # pylint: disable=no-self-use | |
classes = set() | |
for item in train_samples: | |
classes.add(item["speaker_name"]) | |
sampler = PerfectBatchSampler( | |
train_samples, | |
classes, | |
batch_size=2 * 3, # total batch size | |
num_classes_in_batch=2, | |
label_key="speaker_name", | |
shuffle=True, | |
drop_last=False, | |
) | |
batchs = functools.reduce(lambda a, b: a + b, [list(sampler) for i in range(100)]) | |
for batch in batchs: | |
spk1, spk2 = 0, 0 | |
# for in each batch | |
for index in batch: | |
if train_samples[index]["speaker_name"] == "ljspeech-0": | |
spk1 += 1 | |
else: | |
spk2 += 1 | |
assert spk1 == spk2, "PerfectBatchSampler is supposed to be perfectly balanced" | |
def test_length_weighted_random_sampler(self): # pylint: disable=no-self-use | |
for _ in range(1000): | |
# gerenate a lenght unbalanced dataset with random max/min audio lenght | |
min_audio = random.randrange(1, 22050) | |
max_audio = random.randrange(44100, 220500) | |
for idx, item in enumerate(train_samples): | |
# increase the diversity of durations | |
random_increase = random.randrange(100, 1000) | |
if idx < 5: | |
item["audio_length"] = min_audio + random_increase | |
else: | |
item["audio_length"] = max_audio + random_increase | |
weighted_sampler = torch.utils.data.sampler.WeightedRandomSampler( | |
get_length_balancer_weights(train_samples, num_buckets=2), len(train_samples) | |
) | |
ids = functools.reduce(lambda a, b: a + b, [list(weighted_sampler) for i in range(100)]) | |
len1, len2 = 0, 0 | |
for index in ids: | |
if train_samples[index]["audio_length"] < max_audio: | |
len1 += 1 | |
else: | |
len2 += 1 | |
assert is_balanced(len1, len2), "Length Weighted sampler is supposed to be balanced" | |
def test_bucket_batch_sampler(self): | |
bucket_size_multiplier = 2 | |
sampler = range(len(train_samples)) | |
sampler = BucketBatchSampler( | |
sampler, | |
data=train_samples, | |
batch_size=7, | |
drop_last=True, | |
sort_key=lambda x: len(x["text"]), | |
bucket_size_multiplier=bucket_size_multiplier, | |
) | |
# check if the samples are sorted by text lenght whuile bucketing | |
min_text_len_in_bucket = 0 | |
bucket_items = [] | |
for batch_idx, batch in enumerate(list(sampler)): | |
if (batch_idx + 1) % bucket_size_multiplier == 0: | |
for bucket_item in bucket_items: | |
self.assertLessEqual(min_text_len_in_bucket, len(train_samples[bucket_item]["text"])) | |
min_text_len_in_bucket = len(train_samples[bucket_item]["text"]) | |
min_text_len_in_bucket = 0 | |
bucket_items = [] | |
else: | |
bucket_items += batch | |
# check sampler length | |
self.assertEqual(len(sampler), len(train_samples) // 7) | |