video-dubbing / TTS /tests /aux_tests /test_embedding_manager.py
artificialguybr's picture
Upload 659 files
46a75d7
raw
history blame
4.53 kB
import os
import unittest
import numpy as np
import torch
from tests import get_tests_input_path
from TTS.config import load_config
from TTS.encoder.utils.generic_utils import setup_encoder_model
from TTS.encoder.utils.io import save_checkpoint
from TTS.tts.utils.managers import EmbeddingManager
from TTS.utils.audio import AudioProcessor
encoder_config_path = os.path.join(get_tests_input_path(), "test_speaker_encoder_config.json")
encoder_model_path = os.path.join(get_tests_input_path(), "checkpoint_0.pth")
sample_wav_path = os.path.join(get_tests_input_path(), "../data/ljspeech/wavs/LJ001-0001.wav")
sample_wav_path2 = os.path.join(get_tests_input_path(), "../data/ljspeech/wavs/LJ001-0002.wav")
embedding_file_path = os.path.join(get_tests_input_path(), "../data/dummy_speakers.json")
embeddings_file_path2 = os.path.join(get_tests_input_path(), "../data/dummy_speakers2.json")
embeddings_file_pth_path = os.path.join(get_tests_input_path(), "../data/dummy_speakers.pth")
class EmbeddingManagerTest(unittest.TestCase):
"""Test emEeddingManager for loading embedding files and computing embeddings from waveforms"""
@staticmethod
def test_speaker_embedding():
# load config
config = load_config(encoder_config_path)
config.audio.resample = True
# create a dummy speaker encoder
model = setup_encoder_model(config)
save_checkpoint(model, None, None, get_tests_input_path(), 0)
# load audio processor and speaker encoder
manager = EmbeddingManager(encoder_model_path=encoder_model_path, encoder_config_path=encoder_config_path)
# load a sample audio and compute embedding
ap = AudioProcessor(**config.audio)
waveform = ap.load_wav(sample_wav_path)
mel = ap.melspectrogram(waveform)
embedding = manager.compute_embeddings(mel)
assert embedding.shape[1] == 256
# compute embedding directly from an input file
embedding = manager.compute_embedding_from_clip(sample_wav_path)
embedding2 = manager.compute_embedding_from_clip(sample_wav_path)
embedding = torch.FloatTensor(embedding)
embedding2 = torch.FloatTensor(embedding2)
assert embedding.shape[0] == 256
assert (embedding - embedding2).sum() == 0.0
# compute embedding from a list of wav files.
embedding3 = manager.compute_embedding_from_clip([sample_wav_path, sample_wav_path2])
embedding3 = torch.FloatTensor(embedding3)
assert embedding3.shape[0] == 256
assert (embedding - embedding3).sum() != 0.0
# remove dummy model
os.remove(encoder_model_path)
def test_embedding_file_processing(self): # pylint: disable=no-self-use
manager = EmbeddingManager(embedding_file_path=embeddings_file_pth_path)
# test embedding querying
embedding = manager.get_embedding_by_clip(manager.clip_ids[0])
assert len(embedding) == 256
embeddings = manager.get_embeddings_by_name(manager.embedding_names[0])
assert len(embeddings[0]) == 256
embedding1 = manager.get_mean_embedding(manager.embedding_names[0], num_samples=2, randomize=True)
assert len(embedding1) == 256
embedding2 = manager.get_mean_embedding(manager.embedding_names[0], num_samples=2, randomize=False)
assert len(embedding2) == 256
assert np.sum(np.array(embedding1) - np.array(embedding2)) != 0
def test_embedding_file_loading(self):
# test loading a json file
manager = EmbeddingManager(embedding_file_path=embedding_file_path)
self.assertEqual(manager.num_embeddings, 384)
self.assertEqual(manager.embedding_dim, 256)
# test loading a pth file
manager = EmbeddingManager(embedding_file_path=embeddings_file_pth_path)
self.assertEqual(manager.num_embeddings, 384)
self.assertEqual(manager.embedding_dim, 256)
# test loading a pth files with duplicate embedding keys
with self.assertRaises(Exception) as context:
manager = EmbeddingManager(embedding_file_path=[embeddings_file_pth_path, embeddings_file_pth_path])
self.assertTrue("Duplicate embedding names" in str(context.exception))
# test loading embedding files with different embedding keys
manager = EmbeddingManager(embedding_file_path=[embeddings_file_pth_path, embeddings_file_path2])
self.assertEqual(manager.embedding_dim, 256)
self.assertEqual(manager.num_embeddings, 384 * 2)