Spaces:
Running
on
Zero
Running
on
Zero
import numpy as np | |
import pytest | |
import scipy.ndimage | |
import torch | |
from whisper.timing import dtw_cpu, dtw_cuda, median_filter | |
sizes = [ | |
(10, 20), | |
(32, 16), | |
(123, 1500), | |
(234, 189), | |
] | |
shapes = [ | |
(10,), | |
(1, 15), | |
(4, 5, 345), | |
(6, 12, 240, 512), | |
] | |
def test_dtw(N: int, M: int): | |
steps = np.concatenate([np.zeros(N - 1), np.ones(M - 1)]) | |
np.random.shuffle(steps) | |
x = np.random.random((N, M)).astype(np.float32) | |
i, j, k = 0, 0, 0 | |
trace = [] | |
while True: | |
x[i, j] -= 1 | |
trace.append((i, j)) | |
if k == len(steps): | |
break | |
if k + 1 < len(steps) and steps[k] != steps[k + 1]: | |
i += 1 | |
j += 1 | |
k += 2 | |
continue | |
if steps[k] == 0: | |
i += 1 | |
if steps[k] == 1: | |
j += 1 | |
k += 1 | |
trace = np.array(trace).T | |
dtw_trace = dtw_cpu(x) | |
assert np.allclose(trace, dtw_trace) | |
def test_dtw_cuda_equivalence(N: int, M: int): | |
x_numpy = np.random.randn(N, M).astype(np.float32) | |
x_cuda = torch.from_numpy(x_numpy).cuda() | |
trace_cpu = dtw_cpu(x_numpy) | |
trace_cuda = dtw_cuda(x_cuda) | |
assert np.allclose(trace_cpu, trace_cuda) | |
def test_median_filter(shape): | |
x = torch.randn(*shape) | |
for filter_width in [3, 5, 7, 13]: | |
filtered = median_filter(x, filter_width) | |
# using np.pad to reflect-pad, because Scipy's behavior is different near the edges. | |
pad_width = filter_width // 2 | |
padded_x = np.pad( | |
x, [(0, 0)] * (x.ndim - 1) + [(pad_width, pad_width)], mode="reflect" | |
) | |
scipy_filtered = scipy.ndimage.median_filter( | |
padded_x, [1] * (x.ndim - 1) + [filter_width] | |
) | |
scipy_filtered = scipy_filtered[..., pad_width:-pad_width] | |
assert np.allclose(filtered, scipy_filtered) | |
def test_median_filter_equivalence(shape): | |
x = torch.randn(*shape) | |
for filter_width in [3, 5, 7, 13]: | |
filtered_cpu = median_filter(x, filter_width) | |
filtered_gpu = median_filter(x.cuda(), filter_width).cpu() | |
assert np.allclose(filtered_cpu, filtered_gpu) | |