Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import unittest | |
import numpy as np | |
import torch | |
from tests import get_tests_input_path | |
from TTS.config import load_config | |
from TTS.encoder.utils.generic_utils import setup_encoder_model | |
from TTS.encoder.utils.io import save_checkpoint | |
from TTS.tts.utils.speakers import SpeakerManager | |
from TTS.utils.audio import AudioProcessor | |
encoder_config_path = os.path.join(get_tests_input_path(), "test_speaker_encoder_config.json") | |
encoder_model_path = os.path.join(get_tests_input_path(), "checkpoint_0.pth") | |
sample_wav_path = os.path.join(get_tests_input_path(), "../data/ljspeech/wavs/LJ001-0001.wav") | |
sample_wav_path2 = os.path.join(get_tests_input_path(), "../data/ljspeech/wavs/LJ001-0002.wav") | |
d_vectors_file_path = os.path.join(get_tests_input_path(), "../data/dummy_speakers.json") | |
d_vectors_file_pth_path = os.path.join(get_tests_input_path(), "../data/dummy_speakers.pth") | |
class SpeakerManagerTest(unittest.TestCase): | |
"""Test SpeakerManager for loading embedding files and computing d_vectors from waveforms""" | |
def test_speaker_embedding(): | |
# load config | |
config = load_config(encoder_config_path) | |
config.audio.resample = True | |
# create a dummy speaker encoder | |
model = setup_encoder_model(config) | |
save_checkpoint(model, None, None, get_tests_input_path(), 0) | |
# load audio processor and speaker encoder | |
ap = AudioProcessor(**config.audio) | |
manager = SpeakerManager(encoder_model_path=encoder_model_path, encoder_config_path=encoder_config_path) | |
# load a sample audio and compute embedding | |
waveform = ap.load_wav(sample_wav_path) | |
mel = ap.melspectrogram(waveform) | |
d_vector = manager.compute_embeddings(mel) | |
assert d_vector.shape[1] == 256 | |
# compute d_vector directly from an input file | |
d_vector = manager.compute_embedding_from_clip(sample_wav_path) | |
d_vector2 = manager.compute_embedding_from_clip(sample_wav_path) | |
d_vector = torch.FloatTensor(d_vector) | |
d_vector2 = torch.FloatTensor(d_vector2) | |
assert d_vector.shape[0] == 256 | |
assert (d_vector - d_vector2).sum() == 0.0 | |
# compute d_vector from a list of wav files. | |
d_vector3 = manager.compute_embedding_from_clip([sample_wav_path, sample_wav_path2]) | |
d_vector3 = torch.FloatTensor(d_vector3) | |
assert d_vector3.shape[0] == 256 | |
assert (d_vector - d_vector3).sum() != 0.0 | |
# remove dummy model | |
os.remove(encoder_model_path) | |
def test_dvector_file_processing(self): | |
manager = SpeakerManager(d_vectors_file_path=d_vectors_file_path) | |
self.assertEqual(manager.num_speakers, 1) | |
self.assertEqual(manager.embedding_dim, 256) | |
manager = SpeakerManager(d_vectors_file_path=d_vectors_file_pth_path) | |
self.assertEqual(manager.num_speakers, 1) | |
self.assertEqual(manager.embedding_dim, 256) | |
d_vector = manager.get_embedding_by_clip(manager.clip_ids[0]) | |
assert len(d_vector) == 256 | |
d_vectors = manager.get_embeddings_by_name(manager.speaker_names[0]) | |
assert len(d_vectors[0]) == 256 | |
d_vector1 = manager.get_mean_embedding(manager.speaker_names[0], num_samples=2, randomize=True) | |
assert len(d_vector1) == 256 | |
d_vector2 = manager.get_mean_embedding(manager.speaker_names[0], num_samples=2, randomize=False) | |
assert len(d_vector2) == 256 | |
assert np.sum(np.array(d_vector1) - np.array(d_vector2)) != 0 | |