video-dubbing / app.py
artificialguybr's picture
Update app.py
75517c0 verified
raw
history blame
11.2 kB
import spaces
import tempfile
import gradio as gr
import subprocess
import os, stat
import uuid
from googletrans import Translator
import edge_tts
import asyncio
import ffmpeg
import json
from scipy.signal import wiener
import soundfile as sf
from pydub import AudioSegment
import numpy as np
import librosa
from zipfile import ZipFile
import shlex
import cv2
import torch
import torchvision
from tqdm import tqdm
from numba import jit
from huggingface_hub import HfApi
import moviepy.editor as mp
HF_TOKEN = os.environ.get("HF_TOKEN")
api = HfApi(token=HF_TOKEN)
repo_id = "artificialguybr/video-dubbing"
ZipFile("ffmpeg.zip").extractall()
st = os.stat('ffmpeg')
os.chmod('ffmpeg', st.st_mode | stat.S_IEXEC)
print("Starting the program...")
def generate_unique_filename(extension):
return f"{uuid.uuid4()}{extension}"
def cleanup_files(*files):
for file in files:
if file and os.path.exists(file):
os.remove(file)
print(f"Removed file: {file}")
def check_for_faces(video_path):
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
cap = cv2.VideoCapture(video_path)
while True:
ret, frame = cap.read()
if not ret:
break
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.1, 4)
if len(faces) > 0:
return True
return False
@spaces.GPU(duration=90)
def transcribe_audio(file_path):
print(f"Starting transcription of file: {file_path}")
temp_audio = None
if file_path.endswith(('.mp4', '.avi', '.mov', '.flv')):
print("Video file detected. Extracting audio...")
try:
video = mp.VideoFileClip(file_path)
temp_audio = generate_unique_filename(".wav")
video.audio.write_audiofile(temp_audio)
file_path = temp_audio
except Exception as e:
print(f"Error extracting audio from video: {e}")
raise
print(f"Does the file exist? {os.path.exists(file_path)}")
print(f"File size: {os.path.getsize(file_path) if os.path.exists(file_path) else 'N/A'} bytes")
output_file = generate_unique_filename(".json")
command = [
"insanely-fast-whisper",
"--file-name", file_path,
"--device-id", "0",
"--model-name", "openai/whisper-large-v3",
"--task", "transcribe",
"--timestamp", "chunk",
"--transcript-path", output_file
]
print(f"Executing command: {' '.join(command)}")
try:
result = subprocess.run(command, check=True, capture_output=True, text=True)
print(f"Standard output: {result.stdout}")
print(f"Error output: {result.stderr}")
except subprocess.CalledProcessError as e:
print(f"Error running insanely-fast-whisper: {e}")
print(f"Standard output: {e.stdout}")
print(f"Error output: {e.stderr}")
raise
print(f"Reading transcription file: {output_file}")
try:
with open(output_file, "r") as f:
transcription = json.load(f)
except json.JSONDecodeError as e:
print(f"Error decoding JSON: {e}")
print(f"File content: {open(output_file, 'r').read()}")
raise
if "text" in transcription:
result = transcription["text"]
else:
result = " ".join([chunk["text"] for chunk in transcription.get("chunks", [])])
print("Transcription completed.")
# Cleanup
cleanup_files(output_file)
if temp_audio:
cleanup_files(temp_audio)
return result
async def text_to_speech(text, voice, output_file):
communicate = edge_tts.Communicate(text, voice)
await communicate.save(output_file)
@spaces.GPU
def process_video(radio, video, target_language, has_closeup_face):
try:
if target_language is None:
raise ValueError("Please select a Target Language for Dubbing.")
run_uuid = uuid.uuid4().hex[:6]
output_filename = f"{run_uuid}_resized_video.mp4"
ffmpeg.input(video).output(output_filename, vf='scale=-2:720').run()
video_path = output_filename
if not os.path.exists(video_path):
raise FileNotFoundError(f"Error: {video_path} does not exist.")
video_info = ffmpeg.probe(video_path)
video_duration = float(video_info['streams'][0]['duration'])
if video_duration > 60:
os.remove(video_path)
raise ValueError("Video duration exceeds 1 minute. Please upload a shorter video.")
ffmpeg.input(video_path).output(f"{run_uuid}_output_audio.wav", acodec='pcm_s24le', ar=48000, map='a').run()
shell_command = f"ffmpeg -y -i {run_uuid}_output_audio.wav -af lowpass=3000,highpass=100 {run_uuid}_output_audio_final.wav".split(" ")
subprocess.run([item for item in shell_command], capture_output=False, text=True, check=True)
print("Attempting to transcribe with Whisper...")
try:
whisper_text = transcribe_audio(f"{run_uuid}_output_audio_final.wav")
print(f"Transcription successful: {whisper_text}")
except Exception as e:
print(f"Error encountered during transcription: {str(e)}")
raise
language_mapping = {
'English': ('en', 'en-US-EricNeural'),
'Spanish': ('es', 'es-ES-AlvaroNeural'),
'French': ('fr', 'fr-FR-HenriNeural'),
'German': ('de', 'de-DE-ConradNeural'),
'Italian': ('it', 'it-IT-DiegoNeural'),
'Portuguese': ('pt', 'pt-PT-DuarteNeural'),
'Polish': ('pl', 'pl-PL-MarekNeural'),
'Turkish': ('tr', 'tr-TR-AhmetNeural'),
'Russian': ('ru', 'ru-RU-DmitryNeural'),
'Dutch': ('nl', 'nl-NL-MaartenNeural'),
'Czech': ('cs', 'cs-CZ-AntoninNeural'),
'Arabic': ('ar', 'ar-SA-HamedNeural'),
'Chinese (Simplified)': ('zh-CN', 'zh-CN-YunxiNeural'),
'Japanese': ('ja', 'ja-JP-KeitaNeural'),
'Korean': ('ko', 'ko-KR-InJoonNeural'),
'Hindi': ('hi', 'hi-IN-MadhurNeural'),
'Swedish': ('sv', 'sv-SE-MattiasNeural'),
'Danish': ('da', 'da-DK-JeppeNeural'),
'Finnish': ('fi', 'fi-FI-HarriNeural'),
'Greek': ('el', 'el-GR-NestorasNeural')
}
target_language_code, voice = language_mapping[target_language]
translator = Translator()
translated_text = translator.translate(whisper_text, dest=target_language_code).text
print(translated_text)
asyncio.run(text_to_speech(translated_text, voice, f"{run_uuid}_output_synth.wav"))
pad_top = 0
pad_bottom = 15
pad_left = 0
pad_right = 0
rescaleFactor = 1
video_path_fix = video_path
if has_closeup_face:
has_face = True
else:
has_face = check_for_faces(video_path)
if has_closeup_face:
try:
cmd = f"python Wav2Lip/inference.py --checkpoint_path 'Wav2Lip/checkpoints/wav2lip_gan.pth' --face {shlex.quote(video_path)} --audio '{run_uuid}_output_synth.wav' --pads {pad_top} {pad_bottom} {pad_left} {pad_right} --resize_factor {rescaleFactor} --nosmooth --outfile '{run_uuid}_output_video.mp4'"
subprocess.run(cmd, shell=True, check=True)
except subprocess.CalledProcessError as e:
if "Face not detected! Ensure the video contains a face in all the frames." in str(e.stderr):
gr.Warning("Wav2lip didn't detect a face. Please try again with the option disabled.")
cmd = f"ffmpeg -i {video_path} -i {run_uuid}_output_synth.wav -c:v copy -c:a aac -strict experimental -map 0:v:0 -map 1:a:0 {run_uuid}_output_video.mp4"
subprocess.run(cmd, shell=True)
else:
cmd = f"ffmpeg -i {video_path} -i {run_uuid}_output_synth.wav -c:v copy -c:a aac -strict experimental -map 0:v:0 -map 1:a:0 {run_uuid}_output_video.mp4"
subprocess.run(cmd, shell=True)
if not os.path.exists(f"{run_uuid}_output_video.mp4"):
raise FileNotFoundError(f"Error: {run_uuid}_output_video.mp4 was not generated.")
output_video_path = f"{run_uuid}_output_video.mp4"
files_to_delete = [
f"{run_uuid}_resized_video.mp4",
f"{run_uuid}_output_audio.wav",
f"{run_uuid}_output_audio_final.wav",
f"{run_uuid}_output_synth.wav"
]
for file in files_to_delete:
try:
os.remove(file)
except FileNotFoundError:
print(f"File {file} not found for deletion.")
return output_video_path
except Exception as e:
print(f"Error in process_video: {str(e)}")
return gr.update(value=None, visible=True), f"Error: {str(e)}"
def swap(radio):
if(radio == "Upload"):
return gr.update(source="upload")
else:
return gr.update(source="webcam")
video = gr.Video()
radio = gr.Radio(["Upload", "Record"], value="Upload", show_label=False)
iface = gr.Interface(
fn=process_video,
inputs=[
radio,
video,
gr.Dropdown(choices=["English", "Spanish", "French", "German", "Italian", "Portuguese", "Polish", "Turkish", "Russian", "Dutch", "Czech", "Arabic", "Chinese (Simplified)", "Japanese", "Korean", "Hindi", "Swedish", "Danish", "Finnish", "Greek"], label="Target Language for Dubbing", value="Spanish"),
gr.Checkbox(
label="Video has a close-up face. Use Wav2lip.",
value=False,
info="Say if video have close-up face. For Wav2lip. Will not work if checked wrongly.")
],
outputs=[gr.Video(), gr.Textbox(label="Error Message")],
live=False,
title="AI Video Dubbing",
description="""This tool was developed by [@artificialguybr](https://twitter.com/artificialguybr) using entirely open-source tools. Special thanks to Hugging Face for the GPU support. Thanks [@yeswondwer](https://twitter.com/@yeswondwerr) for original code. Test the [Video Transcription and Translate](https://huggingface.co/spaces/artificialguybr/VIDEO-TRANSLATION-TRANSCRIPTION) space!""",
allow_flagging=False
)
with gr.Blocks() as demo:
iface.render()
radio.change(swap, inputs=[radio], outputs=video)
gr.Markdown("""
**Note:**
- Video limit is 1 minute. It will dubbing all people using just one voice.
- Generation may take up to 5 minutes.
- The tool uses open-source models for all models. It's an alpha version.
- Quality can be improved but would require more processing time per video. For scalability and hardware limitations, speed was chosen, not just quality.
- If you need more than 1 minute, duplicate the Space and change the limit on app.py.
- If you incorrectly mark the 'Video has a close-up face' checkbox, the dubbing may not work as expected.
""")
print("Launching Gradio interface...")
demo.queue()
demo.launch()