|
import os |
|
import gradio as gr |
|
import mdtex2html |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from transformers.generation import GenerationConfig |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-14B-Chat", trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-14B-Chat", device_map="auto", trust_remote_code=True).eval() |
|
model.generation_config = GenerationConfig.from_pretrained("Qwen/Qwen-14B-Chat", trust_remote_code=True) |
|
|
|
|
|
def postprocess(self, y): |
|
if y is None: |
|
return [] |
|
for i, (message, response) in enumerate(y): |
|
y[i] = ( |
|
None if message is None else mdtex2html.convert(message), |
|
None if response is None else mdtex2html.convert(response), |
|
) |
|
return y |
|
|
|
gr.Chatbot.postprocess = postprocess |
|
|
|
def _parse_text(text): |
|
lines = text.split("\n") |
|
lines = [line for line in lines if line != ""] |
|
count = 0 |
|
for i, line in enumerate(lines): |
|
if "```" in line: |
|
count += 1 |
|
items = line.split("`") |
|
if count % 2 == 1: |
|
lines[i] = f'<pre><code class="language-{items[-1]}">' |
|
else: |
|
lines[i] = f"<br></code></pre>" |
|
else: |
|
if i > 0: |
|
if count % 2 == 1: |
|
line = line.replace("`", r"\`") |
|
line = line.replace("<", "<") |
|
line = line.replace(">", ">") |
|
line = line.replace(" ", " ") |
|
line = line.replace("*", "*") |
|
line = line.replace("_", "_") |
|
line = line.replace("-", "-") |
|
line = line.replace(".", ".") |
|
line = line.replace("!", "!") |
|
line = line.replace("(", "(") |
|
line = line.replace(")", ")") |
|
line = line.replace("$", "$") |
|
lines[i] = "<br>" + line |
|
text = "".join(lines) |
|
return text |
|
|
|
|
|
def _launch_demo(args, model, tokenizer, config): |
|
def predict(_query, _chatbot, _task_history): |
|
print(f"User: {_parse_text(_query)}") |
|
_chatbot.append((_parse_text(_query), "")) |
|
full_response = "" |
|
|
|
for response in model.chat_stream(tokenizer, _query, history=_task_history, generation_config=config): |
|
_chatbot[-1] = (_parse_text(_query), _parse_text(response)) |
|
|
|
yield _chatbot |
|
full_response = _parse_text(response) |
|
|
|
print(f"History: {_task_history}") |
|
_task_history.append((_query, full_response)) |
|
print(f"Qwen-Chat: {_parse_text(full_response)}") |
|
|
|
def regenerate(_chatbot, _task_history): |
|
if not _task_history: |
|
yield _chatbot |
|
return |
|
item = _task_history.pop(-1) |
|
_chatbot.pop(-1) |
|
yield from predict(item[0], _chatbot, _task_history) |
|
|
|
def reset_user_input(): |
|
return gr.update(value="") |
|
|
|
def reset_state(_chatbot, _task_history): |
|
_task_history.clear() |
|
_chatbot.clear() |
|
import gc |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
return _chatbot |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown(""" |
|
## Qwen-14B-Chat: A Large Language Model by Alibaba Cloud |
|
**Space created by [@artificialguybr](https://twitter.com/artificialguybr) based on QWEN Code. Thanks HF for GPU!** |
|
**Qwen is currently SOTA in the benchmarks for 14B models.** |
|
|
|
### Performance Metrics: |
|
- **MMLU Accuracy**: |
|
- 0-shot: 64.6 |
|
- 5-shot: 66.5 |
|
- **HumanEval Pass@1**: 43.9 |
|
- **GSM8K Accuracy**: |
|
- 0-shot: 60.1 |
|
- 8-shot: 59.3 |
|
""") |
|
chatbot = gr.Chatbot(label='Qwen-Chat', elem_classes="control-height", queue=True) |
|
query = gr.Textbox(lines=2, label='Input') |
|
task_history = gr.State([]) |
|
|
|
with gr.Row(): |
|
empty_btn = gr.Button("π§Ή Clear History") |
|
submit_btn = gr.Button("π Submit") |
|
regen_btn = gr.Button("π€οΈ Regenerate") |
|
|
|
submit_btn.click(predict, [query, chatbot, task_history], [chatbot], show_progress=True, queue=True) |
|
submit_btn.click(reset_user_input, [], [query]) |
|
empty_btn.click(reset_state, [chatbot, task_history], outputs=[chatbot], show_progress=True) |
|
regen_btn.click(regenerate, [chatbot, task_history], [chatbot], show_progress=True, queue=True) |
|
demo.queue(max_size=20) |
|
demo.launch(share=True) |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
_launch_demo(None, model, tokenizer, model.generation_config) |
|
|