Spaces:
Runtime error
Runtime error
import gradio as gr | |
import requests | |
import io | |
import os | |
import logging | |
from PIL import Image | |
from image_processing import downscale_image, limit_colors, convert_to_grayscale, convert_to_black_and_white, resize_image, DITHER_METHODS, QUANTIZATION_METHODS | |
import json | |
import time | |
# Configuração de log | |
logging.basicConfig(level=logging.DEBUG) | |
class SomeClass: | |
def __init__(self): | |
self.images = [] | |
with open('loras.json', 'r') as f: | |
loras = json.load(f) | |
def update_selection(selected_state: gr.SelectData): | |
logging.debug(f"Inside update_selection, selected_state: {selected_state}") | |
logging.debug(f"Content of selected_state: {vars(selected_state)}") # Log the content | |
selected_lora_index = selected_state.index | |
selected_lora = loras[selected_lora_index] | |
new_placeholder = f"Type a prompt for {selected_lora['title']}" | |
lora_repo = selected_lora["repo"] | |
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨" | |
return ( | |
gr.update(placeholder=new_placeholder), | |
updated_text, | |
selected_state | |
) | |
def run_lora(prompt, selected_state, progress=gr.Progress(track_tqdm=True)): | |
logging.debug(f"Inside run_lora, selected_state: {selected_state}") | |
logging.debug(f"Content of selected_state in run_lora: {vars(selected_state)}") | |
if not selected_state: | |
logging.error("selected_state is None or empty. Make sure a LoRA is selected.") | |
raise gr.Error("You must select a LoRA before proceeding.") | |
token = os.getenv("API_TOKEN") | |
if not token: | |
logging.error("API_TOKEN is not set.") | |
raise gr.Error("API_TOKEN is not set.") | |
selected_lora_index = selected_state.index | |
selected_lora = loras[selected_lora_index] | |
api_url = f"https://api-inference.huggingface.co/models/{selected_lora['repo']}" | |
trigger_word = selected_lora["trigger_word"] | |
payload = { | |
"inputs": f"{prompt} {trigger_word}", | |
"parameters": {"negative_prompt": "bad art, ugly, watermark, deformed"}, | |
} | |
headers = {"Authorization": f"Bearer {token}"} | |
logging.debug(f"API Request: {api_url}") | |
logging.debug(f"API Payload: {payload}") | |
error_count = 0 | |
while True: | |
response = requests.post(api_url, json=payload, headers=headers) | |
if response.status_code == 200: | |
return Image.open(io.BytesIO(response.content)) | |
elif response.status_code == 503: | |
time.sleep(1) | |
elif response.status_code == 500 and error_count < 5: | |
logging.error(response.content) | |
time.sleep(1) | |
error_count += 1 | |
else: | |
logging.error(f"Unexpected API Error: {response.status_code}") | |
raise gr.Error(f"Unexpected API Error: {response.status_code}") | |
def postprocess( | |
image, | |
enabled, | |
downscale, | |
need_rescale, | |
enable_color_limit, | |
number_of_colors, | |
quantization_method, | |
dither_method, | |
use_k_means, | |
is_grayscale, | |
number_of_shades, | |
quantization_method_grayscale, | |
dither_method_grayscale, | |
use_k_means_grayscale, | |
is_black_and_white, | |
is_inversed_black_and_white, | |
black_and_white_threshold, | |
use_color_palette, | |
palette_image, | |
palette_colors, | |
dither_method_palette | |
): | |
logging.debug(f"Available keys in QUANTIZATION_METHODS: {QUANTIZATION_METHODS.keys()}") | |
logging.debug(f"Selected quantization_method: {quantization_method}") | |
if not enabled: | |
return image | |
processed_image = image.copy() | |
if downscale > 1: | |
processed_image = downscale_image(processed_image, downscale) | |
if enable_color_limit: | |
processed_image = limit_colors( | |
image=processed_image, | |
limit=number_of_colors, | |
quantize=QUANTIZATION_METHODS[quantization_method.capitalize()], | |
dither=DITHER_METHODS[dither_method], | |
use_k_means=use_k_means | |
) | |
if is_grayscale: | |
processed_image = convert_to_grayscale(processed_image) | |
processed_image = limit_colors( | |
image=processed_image, | |
limit=number_of_shades, | |
quantize=QUANTIZATION_METHODS[quantization_method_grayscale.capitalize()], | |
dither=DITHER_METHODS[dither_method_grayscale], | |
use_k_means=use_k_means_grayscale | |
) | |
if is_black_and_white: | |
processed_image = convert_to_black_and_white(processed_image, black_and_white_threshold, is_inversed_black_and_white) | |
if use_color_palette: | |
processed_image = limit_colors( | |
image=processed_image, | |
palette=palette_image, | |
palette_colors=palette_colors, | |
dither=DITHER_METHODS[dither_method_palette] | |
) | |
if need_rescale: | |
processed_image = resize_image(processed_image, image.size) | |
return processed_image | |
def run_and_postprocess(prompt, selected_state, enabled, downscale, need_rescale, enable_color_limit, palette_size_color, quantization_methods_color, dither_methods_color, k_means_color, enable_grayscale, palette_size_gray, quantization_methods_gray, dither_methods_gray, k_means_gray, enable_black_and_white, inverse_black_and_white, threshold_black_and_white, enable_custom_palette, palette_image, palette_size_custom, dither_methods_custom): | |
# Debug: Starting the function | |
logging.debug("Starting run_and_postprocess function.") | |
# Run the original image generation | |
original_image = run_lora(prompt, selected_state) | |
# Debug: Confirming that the original image was generated | |
logging.debug("Original image generated.") | |
# Post-process the image based on user input | |
processed_image = postprocess( | |
original_image, | |
enabled, | |
downscale, | |
need_rescale, | |
enable_color_limit, | |
palette_size_color, | |
quantization_methods_color, | |
dither_methods_color, | |
k_means_color, | |
enable_grayscale, | |
palette_size_gray, | |
quantization_methods_gray, | |
dither_methods_gray, | |
k_means_gray, | |
enable_black_and_white, | |
inverse_black_and_white, | |
threshold_black_and_white, | |
enable_custom_palette, | |
palette_image, | |
palette_size_custom, | |
dither_methods_custom | |
) | |
# Debug: Confirming that post-processing was applied | |
if enabled: | |
logging.debug("Post-processing applied.") | |
else: | |
logging.debug("Post-processing not applied.") | |
return processed_image if enabled else original_image | |
with gr.Blocks() as app: | |
title = gr.Markdown("# PIXEL ART GENERATOR") | |
description = gr.Markdown("### This tool was developed by [@artificialguybr](https://twitter.com/artificialguybr). Generate Pixel Art using Lora from [@artificialguybr](https://twitter.com/artificialguybr) and [@nerijs](https://twitter.com/nerijs)".) | |
selected_state = gr.State() | |
with gr.Row(): | |
gallery = gr.Gallery([(item["image"], item["title"]) for item in loras], label="LoRA Gallery", allow_preview=False, columns=1) | |
with gr.Column(): | |
prompt_title = gr.Markdown("### Click on a LoRA in the gallery to create with it") | |
selected_info = gr.Markdown("") | |
with gr.Row(): | |
prompt = gr.Textbox(label="Prompt", show_label=False, lines=1, max_lines=1, placeholder="Type a prompt after selecting a LoRA") | |
button = gr.Button("Run") | |
result = gr.Image(interactive=False, label="Generated Image") | |
# Accordion moved here, inside the same gr.Blocks context | |
with gr.Accordion(label="Pixel art", open=True): | |
with gr.Row(): | |
enabled = gr.Checkbox(label="Enable", value=False) | |
downscale = gr.Slider(label="Downscale", minimum=1, maximum=32, step=2, value=8) | |
need_rescale = gr.Checkbox(label="Rescale to original size", value=True) | |
with gr.Tabs(): | |
with gr.TabItem("Color"): | |
enable_color_limit = gr.Checkbox(label="Enable", value=False) | |
palette_size_color = gr.Slider(label="Palette Size", minimum=1, maximum=256, step=1, value=16) | |
quantization_methods_color = gr.Radio(choices=["Median Cut", "Maximum Coverage", "Fast Octree"], label="Colors Quantization Method", value="Median Cut") | |
dither_methods_color = gr.Radio(choices=["None", "Floyd-Steinberg"], label="Colors Dither Method", value="None") | |
k_means_color = gr.Checkbox(label="Enable k-means for color quantization", value=True) | |
with gr.TabItem("Grayscale"): | |
enable_grayscale = gr.Checkbox(label="Enable", value=False) | |
palette_size_gray = gr.Slider(label="Palette Size", minimum=1, maximum=256, step=1, value=16) | |
quantization_methods_gray = gr.Radio(choices=["Median Cut", "Maximum Coverage", "Fast Octree"], label="Colors Quantization Method", value="Median Cut") | |
dither_methods_gray = gr.Radio(choices=["None", "Floyd-Steinberg"], label="Colors Dither Method", value="None") | |
k_means_gray = gr.Checkbox(label="Enable k-means for color quantization", value=True) | |
with gr.TabItem("Black and white"): | |
enable_black_and_white = gr.Checkbox(label="Enable", value=False) | |
inverse_black_and_white = gr.Checkbox(label="Inverse", value=False) | |
threshold_black_and_white = gr.Slider(label="Threshold", minimum=1, maximum=256, step=1, value=128) | |
with gr.TabItem("Custom color palette"): | |
enable_custom_palette = gr.Checkbox(label="Enable", value=False) | |
palette_image = gr.Image(label="Color palette image", type="pil") | |
palette_size_custom = gr.Slider(label="Palette Size", minimum=1, maximum=256, step=1, value=16) | |
dither_methods_custom = gr.Radio(choices=["None", "Floyd-Steinberg"], label="Colors Dither Method", value="None") | |
# The rest of your code for setting up the app | |
gallery.select(update_selection, outputs=[prompt, selected_info, selected_state]) | |
prompt.submit(fn=run_lora, inputs=[prompt, selected_state], outputs=[result]) | |
button.click( | |
fn=run_and_postprocess, | |
inputs=[ | |
prompt, | |
selected_state, | |
enabled, | |
downscale, | |
need_rescale, | |
enable_color_limit, | |
palette_size_color, | |
quantization_methods_color, | |
dither_methods_color, | |
k_means_color, | |
enable_grayscale, | |
palette_size_gray, | |
quantization_methods_gray, | |
dither_methods_gray, | |
k_means_gray, | |
enable_black_and_white, | |
inverse_black_and_white, | |
threshold_black_and_white, | |
enable_custom_palette, | |
palette_image, | |
palette_size_custom, | |
dither_methods_custom | |
], | |
outputs=[result] | |
) | |
app.queue(max_size=20, concurrency_count=5) | |
app.launch() | |