artificialguybr's picture
Update app.py
860569f
raw
history blame
11.1 kB
import gradio as gr
import requests
import io
import os
import logging
from PIL import Image
from image_processing import downscale_image, limit_colors, convert_to_grayscale, convert_to_black_and_white, resize_image, DITHER_METHODS, QUANTIZATION_METHODS
import json
import time
# Configuração de log
logging.basicConfig(level=logging.DEBUG)
class SomeClass:
def __init__(self):
self.images = []
with open('loras.json', 'r') as f:
loras = json.load(f)
def update_selection(selected_state: gr.SelectData):
logging.debug(f"Inside update_selection, selected_state: {selected_state}")
logging.debug(f"Content of selected_state: {vars(selected_state)}") # Log the content
selected_lora_index = selected_state.index
selected_lora = loras[selected_lora_index]
new_placeholder = f"Type a prompt for {selected_lora['title']}"
lora_repo = selected_lora["repo"]
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
return (
gr.update(placeholder=new_placeholder),
updated_text,
selected_state
)
def run_lora(prompt, selected_state, progress=gr.Progress(track_tqdm=True)):
logging.debug(f"Inside run_lora, selected_state: {selected_state}")
logging.debug(f"Content of selected_state in run_lora: {vars(selected_state)}")
if not selected_state:
logging.error("selected_state is None or empty. Make sure a LoRA is selected.")
raise gr.Error("You must select a LoRA before proceeding.")
token = os.getenv("API_TOKEN")
if not token:
logging.error("API_TOKEN is not set.")
raise gr.Error("API_TOKEN is not set.")
selected_lora_index = selected_state.index
selected_lora = loras[selected_lora_index]
api_url = f"https://api-inference.huggingface.co/models/{selected_lora['repo']}"
trigger_word = selected_lora["trigger_word"]
payload = {
"inputs": f"{prompt} {trigger_word}",
"parameters": {"negative_prompt": "bad art, ugly, watermark, deformed"},
}
headers = {"Authorization": f"Bearer {token}"}
logging.debug(f"API Request: {api_url}")
logging.debug(f"API Payload: {payload}")
error_count = 0
while True:
response = requests.post(api_url, json=payload, headers=headers)
if response.status_code == 200:
return Image.open(io.BytesIO(response.content))
elif response.status_code == 503:
time.sleep(1)
elif response.status_code == 500 and error_count < 5:
logging.error(response.content)
time.sleep(1)
error_count += 1
else:
logging.error(f"Unexpected API Error: {response.status_code}")
raise gr.Error(f"Unexpected API Error: {response.status_code}")
def postprocess(
image,
enabled,
downscale,
need_rescale,
enable_color_limit,
number_of_colors,
quantization_method,
dither_method,
use_k_means,
is_grayscale,
number_of_shades,
quantization_method_grayscale,
dither_method_grayscale,
use_k_means_grayscale,
is_black_and_white,
is_inversed_black_and_white,
black_and_white_threshold,
use_color_palette,
palette_image,
palette_colors,
dither_method_palette
):
logging.debug(f"Available keys in QUANTIZATION_METHODS: {QUANTIZATION_METHODS.keys()}")
logging.debug(f"Selected quantization_method: {quantization_method}")
if not enabled:
return image
processed_image = image.copy()
if downscale > 1:
processed_image = downscale_image(processed_image, downscale)
if enable_color_limit:
processed_image = limit_colors(
image=processed_image,
limit=number_of_colors,
quantize=QUANTIZATION_METHODS[quantization_method.capitalize()],
dither=DITHER_METHODS[dither_method],
use_k_means=use_k_means
)
if is_grayscale:
processed_image = convert_to_grayscale(processed_image)
processed_image = limit_colors(
image=processed_image,
limit=number_of_shades,
quantize=QUANTIZATION_METHODS[quantization_method_grayscale.capitalize()],
dither=DITHER_METHODS[dither_method_grayscale],
use_k_means=use_k_means_grayscale
)
if is_black_and_white:
processed_image = convert_to_black_and_white(processed_image, black_and_white_threshold, is_inversed_black_and_white)
if use_color_palette:
processed_image = limit_colors(
image=processed_image,
palette=palette_image,
palette_colors=palette_colors,
dither=DITHER_METHODS[dither_method_palette]
)
if need_rescale:
processed_image = resize_image(processed_image, image.size)
return processed_image
def run_and_postprocess(prompt, selected_state, enabled, downscale, need_rescale, enable_color_limit, palette_size_color, quantization_methods_color, dither_methods_color, k_means_color, enable_grayscale, palette_size_gray, quantization_methods_gray, dither_methods_gray, k_means_gray, enable_black_and_white, inverse_black_and_white, threshold_black_and_white, enable_custom_palette, palette_image, palette_size_custom, dither_methods_custom):
# Debug: Starting the function
logging.debug("Starting run_and_postprocess function.")
# Run the original image generation
original_image = run_lora(prompt, selected_state)
# Debug: Confirming that the original image was generated
logging.debug("Original image generated.")
# Post-process the image based on user input
processed_image = postprocess(
original_image,
enabled,
downscale,
need_rescale,
enable_color_limit,
palette_size_color,
quantization_methods_color,
dither_methods_color,
k_means_color,
enable_grayscale,
palette_size_gray,
quantization_methods_gray,
dither_methods_gray,
k_means_gray,
enable_black_and_white,
inverse_black_and_white,
threshold_black_and_white,
enable_custom_palette,
palette_image,
palette_size_custom,
dither_methods_custom
)
# Debug: Confirming that post-processing was applied
if enabled:
logging.debug("Post-processing applied.")
else:
logging.debug("Post-processing not applied.")
return processed_image if enabled else original_image
with gr.Blocks() as app:
title = gr.Markdown("# PIXEL ART GENERATOR")
description = gr.Markdown("### This tool was developed by [@artificialguybr](https://twitter.com/artificialguybr). Generate Pixel Art using Lora from [@artificialguybr](https://twitter.com/artificialguybr) and [@nerijs](https://twitter.com/nerijs)".)
selected_state = gr.State()
with gr.Row():
gallery = gr.Gallery([(item["image"], item["title"]) for item in loras], label="LoRA Gallery", allow_preview=False, columns=1)
with gr.Column():
prompt_title = gr.Markdown("### Click on a LoRA in the gallery to create with it")
selected_info = gr.Markdown("")
with gr.Row():
prompt = gr.Textbox(label="Prompt", show_label=False, lines=1, max_lines=1, placeholder="Type a prompt after selecting a LoRA")
button = gr.Button("Run")
result = gr.Image(interactive=False, label="Generated Image")
# Accordion moved here, inside the same gr.Blocks context
with gr.Accordion(label="Pixel art", open=True):
with gr.Row():
enabled = gr.Checkbox(label="Enable", value=False)
downscale = gr.Slider(label="Downscale", minimum=1, maximum=32, step=2, value=8)
need_rescale = gr.Checkbox(label="Rescale to original size", value=True)
with gr.Tabs():
with gr.TabItem("Color"):
enable_color_limit = gr.Checkbox(label="Enable", value=False)
palette_size_color = gr.Slider(label="Palette Size", minimum=1, maximum=256, step=1, value=16)
quantization_methods_color = gr.Radio(choices=["Median Cut", "Maximum Coverage", "Fast Octree"], label="Colors Quantization Method", value="Median Cut")
dither_methods_color = gr.Radio(choices=["None", "Floyd-Steinberg"], label="Colors Dither Method", value="None")
k_means_color = gr.Checkbox(label="Enable k-means for color quantization", value=True)
with gr.TabItem("Grayscale"):
enable_grayscale = gr.Checkbox(label="Enable", value=False)
palette_size_gray = gr.Slider(label="Palette Size", minimum=1, maximum=256, step=1, value=16)
quantization_methods_gray = gr.Radio(choices=["Median Cut", "Maximum Coverage", "Fast Octree"], label="Colors Quantization Method", value="Median Cut")
dither_methods_gray = gr.Radio(choices=["None", "Floyd-Steinberg"], label="Colors Dither Method", value="None")
k_means_gray = gr.Checkbox(label="Enable k-means for color quantization", value=True)
with gr.TabItem("Black and white"):
enable_black_and_white = gr.Checkbox(label="Enable", value=False)
inverse_black_and_white = gr.Checkbox(label="Inverse", value=False)
threshold_black_and_white = gr.Slider(label="Threshold", minimum=1, maximum=256, step=1, value=128)
with gr.TabItem("Custom color palette"):
enable_custom_palette = gr.Checkbox(label="Enable", value=False)
palette_image = gr.Image(label="Color palette image", type="pil")
palette_size_custom = gr.Slider(label="Palette Size", minimum=1, maximum=256, step=1, value=16)
dither_methods_custom = gr.Radio(choices=["None", "Floyd-Steinberg"], label="Colors Dither Method", value="None")
# The rest of your code for setting up the app
gallery.select(update_selection, outputs=[prompt, selected_info, selected_state])
prompt.submit(fn=run_lora, inputs=[prompt, selected_state], outputs=[result])
button.click(
fn=run_and_postprocess,
inputs=[
prompt,
selected_state,
enabled,
downscale,
need_rescale,
enable_color_limit,
palette_size_color,
quantization_methods_color,
dither_methods_color,
k_means_color,
enable_grayscale,
palette_size_gray,
quantization_methods_gray,
dither_methods_gray,
k_means_gray,
enable_black_and_white,
inverse_black_and_white,
threshold_black_and_white,
enable_custom_palette,
palette_image,
palette_size_custom,
dither_methods_custom
],
outputs=[result]
)
app.queue(max_size=20, concurrency_count=5)
app.launch()