artificialguybr's picture
Update app.py
ea82e47
import gradio as gr
import openai
import json
from graphviz import Digraph
from PIL import Image
import io
import requests
from bs4 import BeautifulSoup
from ast import literal_eval
# Function to scrape text from a website
def scrape_text_from_url(url):
response = requests.get(url)
if response.status_code != 200:
return "Error: Could not retrieve content from URL."
soup = BeautifulSoup(response.text, "html.parser")
paragraphs = soup.find_all("p")
text = " ".join([p.get_text() for p in paragraphs])
return text
def generate_knowledge_graph(api_key, user_input):
openai.api_key = api_key
# Check if input is URL or text
if user_input.startswith("http://") or user_input.startswith("https://"):
user_input = scrape_text_from_url(user_input)
# Chamar a API da OpenAI
completion = openai.ChatCompletion.create(
model="gpt-3.5-turbo-16k",
messages=[
{
"role": "user",
"content": f"Help me understand following by describing as a detailed knowledge graph: {user_input}",
}
],
functions=[
{
"name": "knowledge_graph",
"description": "Generate a knowledge graph with entities and relationships. Use the colors to help differentiate between different node or edge types/categories. Always provide light pastel colors that work well with black font.",
"parameters": {
"type": "object",
"properties": {
"metadata": {
"type": "object",
"properties": {
"createdDate": {"type": "string"},
"lastUpdated": {"type": "string"},
"description": {"type": "string"},
},
},
"nodes": {
"type": "array",
"items": {
"type": "object",
"properties": {
"id": {"type": "string"},
"label": {"type": "string"},
"type": {"type": "string"},
"color": {"type": "string"}, # Added color property
"properties": {
"type": "object",
"description": "Additional attributes for the node",
},
},
"required": [
"id",
"label",
"type",
"color",
], # Added color to required
},
},
"edges": {
"type": "array",
"items": {
"type": "object",
"properties": {
"from": {"type": "string"},
"to": {"type": "string"},
"relationship": {"type": "string"},
"direction": {"type": "string"},
"color": {"type": "string"}, # Added color property
"properties": {
"type": "object",
"description": "Additional attributes for the edge",
},
},
"required": [
"from",
"to",
"relationship",
"color",
], # Added color to required
},
},
},
"required": ["nodes", "edges"],
},
}
],
function_call={"name": "knowledge_graph"},
)
response_data = completion.choices[0]["message"]["function_call"]["arguments"]
try:
if isinstance(response_data, str):
response_data = literal_eval(response_data)
except (ValueError, SyntaxError) as e:
print(f"Error in decoding JSON or literal_eval: {e}")
return "Error in decoding JSON"
if not isinstance(response_data, dict):
print("Unexpected data type for response_data")
return "Error: Unexpected data type"
dot = Digraph(comment="Knowledge Graph", format='png')
dot.attr(dpi='300')
dot.attr(bgcolor='white')
dot.attr('node', shape='box', style='filled', fillcolor='lightblue', fontcolor='black')
for node in response_data.get("nodes", []):
dot.node(node["id"], f"{node['label']} ({node['type']})", color=node.get("color", "lightblue"))
dot.attr('edge', color='black', fontcolor='black')
for edge in response_data.get("edges", []):
dot.edge(edge["from"], edge["to"], label=edge["relationship"], color=edge.get("color", "black"))
image_data = dot.pipe()
image = Image.open(io.BytesIO(image_data))
return image
title_and_description = """
# Instagraph - Knowledge Graph Generator
Created by [@artificialguybr](https://twitter.com/artificialguybr)
Code by [Instagraph on GitHub](https://github.com/yoheinakajima/instagraph)
Enter your OpenAI API Key and a question, and let the AI create a detailed knowledge graph for you.
## Features
- **URL**: You can now input a URL to scrape text for generating the knowledge graph.
- **Security**: Rest assured, the code is open for your inspection in the files. There's no risk in using your OpenAI API key here.
- **Best View**: For the best visualization, consider downloading the generated image.
- **Flexible Input**: You can either type what you want the API to generate as a graph or use a URL for this purpose.
Feel free to explore and generate your own knowledge graphs!
"""
with gr.Blocks() as app:
gr.Markdown(title_and_description)
with gr.Row():
with gr.Column():
result_image = gr.Image(type="pil", label="Generated Knowledge Graph")
with gr.Row():
with gr.Column():
api_key = gr.Textbox(label="OpenAI API Key", type="password")
user_input = gr.Textbox(label="User Input for Graph or URL", type="text")
run_btn = gr.Button("Generate")
run_btn.click(
generate_knowledge_graph,
inputs=[api_key, user_input],
outputs=[result_image]
)
app.queue(concurrency_count=10)
print("Iniciando a interface Gradio...")
app.launch()