Spaces:
Sleeping
Sleeping
import gradio as gr | |
import openai | |
import json | |
from graphviz import Digraph | |
from PIL import Image | |
import io | |
import requests | |
from bs4 import BeautifulSoup | |
from ast import literal_eval | |
# Function to scrape text from a website | |
def scrape_text_from_url(url): | |
response = requests.get(url) | |
if response.status_code != 200: | |
return "Error: Could not retrieve content from URL." | |
soup = BeautifulSoup(response.text, "html.parser") | |
paragraphs = soup.find_all("p") | |
text = " ".join([p.get_text() for p in paragraphs]) | |
return text | |
def generate_knowledge_graph(api_key, user_input): | |
openai.api_key = api_key | |
# Check if input is URL or text | |
if user_input.startswith("http://") or user_input.startswith("https://"): | |
user_input = scrape_text_from_url(user_input) | |
# Chamar a API da OpenAI | |
completion = openai.ChatCompletion.create( | |
model="gpt-3.5-turbo-16k", | |
messages=[ | |
{ | |
"role": "user", | |
"content": f"Help me understand following by describing as a detailed knowledge graph: {user_input}", | |
} | |
], | |
functions=[ | |
{ | |
"name": "knowledge_graph", | |
"description": "Generate a knowledge graph with entities and relationships. Use the colors to help differentiate between different node or edge types/categories. Always provide light pastel colors that work well with black font.", | |
"parameters": { | |
"type": "object", | |
"properties": { | |
"metadata": { | |
"type": "object", | |
"properties": { | |
"createdDate": {"type": "string"}, | |
"lastUpdated": {"type": "string"}, | |
"description": {"type": "string"}, | |
}, | |
}, | |
"nodes": { | |
"type": "array", | |
"items": { | |
"type": "object", | |
"properties": { | |
"id": {"type": "string"}, | |
"label": {"type": "string"}, | |
"type": {"type": "string"}, | |
"color": {"type": "string"}, # Added color property | |
"properties": { | |
"type": "object", | |
"description": "Additional attributes for the node", | |
}, | |
}, | |
"required": [ | |
"id", | |
"label", | |
"type", | |
"color", | |
], # Added color to required | |
}, | |
}, | |
"edges": { | |
"type": "array", | |
"items": { | |
"type": "object", | |
"properties": { | |
"from": {"type": "string"}, | |
"to": {"type": "string"}, | |
"relationship": {"type": "string"}, | |
"direction": {"type": "string"}, | |
"color": {"type": "string"}, # Added color property | |
"properties": { | |
"type": "object", | |
"description": "Additional attributes for the edge", | |
}, | |
}, | |
"required": [ | |
"from", | |
"to", | |
"relationship", | |
"color", | |
], # Added color to required | |
}, | |
}, | |
}, | |
"required": ["nodes", "edges"], | |
}, | |
} | |
], | |
function_call={"name": "knowledge_graph"}, | |
) | |
response_data = completion.choices[0]["message"]["function_call"]["arguments"] | |
try: | |
if isinstance(response_data, str): | |
response_data = literal_eval(response_data) | |
except (ValueError, SyntaxError) as e: | |
print(f"Error in decoding JSON or literal_eval: {e}") | |
return "Error in decoding JSON" | |
if not isinstance(response_data, dict): | |
print("Unexpected data type for response_data") | |
return "Error: Unexpected data type" | |
dot = Digraph(comment="Knowledge Graph", format='png') | |
dot.attr(dpi='300') | |
dot.attr(bgcolor='white') | |
dot.attr('node', shape='box', style='filled', fillcolor='lightblue', fontcolor='black') | |
for node in response_data.get("nodes", []): | |
dot.node(node["id"], f"{node['label']} ({node['type']})", color=node.get("color", "lightblue")) | |
dot.attr('edge', color='black', fontcolor='black') | |
for edge in response_data.get("edges", []): | |
dot.edge(edge["from"], edge["to"], label=edge["relationship"], color=edge.get("color", "black")) | |
image_data = dot.pipe() | |
image = Image.open(io.BytesIO(image_data)) | |
return image | |
title_and_description = """ | |
# Instagraph - Knowledge Graph Generator | |
Created by [@artificialguybr](https://twitter.com/artificialguybr) | |
Code by [Instagraph on GitHub](https://github.com/yoheinakajima/instagraph) | |
Enter your OpenAI API Key and a question, and let the AI create a detailed knowledge graph for you. | |
## Features | |
- **URL**: You can now input a URL to scrape text for generating the knowledge graph. | |
- **Security**: Rest assured, the code is open for your inspection in the files. There's no risk in using your OpenAI API key here. | |
- **Best View**: For the best visualization, consider downloading the generated image. | |
- **Flexible Input**: You can either type what you want the API to generate as a graph or use a URL for this purpose. | |
Feel free to explore and generate your own knowledge graphs! | |
""" | |
with gr.Blocks() as app: | |
gr.Markdown(title_and_description) | |
with gr.Row(): | |
with gr.Column(): | |
result_image = gr.Image(type="pil", label="Generated Knowledge Graph") | |
with gr.Row(): | |
with gr.Column(): | |
api_key = gr.Textbox(label="OpenAI API Key", type="password") | |
user_input = gr.Textbox(label="User Input for Graph or URL", type="text") | |
run_btn = gr.Button("Generate") | |
run_btn.click( | |
generate_knowledge_graph, | |
inputs=[api_key, user_input], | |
outputs=[result_image] | |
) | |
app.queue(concurrency_count=10) | |
print("Iniciando a interface Gradio...") | |
app.launch() |