Spaces:
Running
on
Zero
Running
on
Zero
artificialguybr
commited on
Commit
•
bdd072a
1
Parent(s):
240de18
Update app.py
Browse files
app.py
CHANGED
@@ -10,6 +10,7 @@ import spaces
|
|
10 |
import moviepy.editor as mp
|
11 |
import time
|
12 |
import langdetect
|
|
|
13 |
|
14 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
15 |
print("Starting the program...")
|
@@ -21,8 +22,17 @@ model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float
|
|
21 |
model = model.eval()
|
22 |
print("Model successfully loaded.")
|
23 |
|
24 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
print(f"Downloading audio from YouTube: {url}")
|
|
|
26 |
ydl_opts = {
|
27 |
'format': 'bestaudio/best',
|
28 |
'postprocessors': [{
|
@@ -34,16 +44,13 @@ def download_youtube_audio(url, output_path):
|
|
34 |
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
35 |
ydl.download([url])
|
36 |
|
37 |
-
# Check if the file was renamed to .wav.wav
|
38 |
-
if os.path.exists(output_path + ".wav"):
|
39 |
-
os.rename(output_path + ".wav", output_path)
|
40 |
-
|
41 |
if os.path.exists(output_path):
|
42 |
print(f"Audio download completed. File saved at: {output_path}")
|
43 |
print(f"File size: {os.path.getsize(output_path)} bytes")
|
44 |
else:
|
45 |
print(f"Error: File {output_path} not found after download.")
|
46 |
-
|
|
|
47 |
|
48 |
@spaces.GPU(duration=60)
|
49 |
def transcribe_audio(file_path):
|
@@ -52,15 +59,15 @@ def transcribe_audio(file_path):
|
|
52 |
print("Video file detected. Extracting audio...")
|
53 |
try:
|
54 |
video = mp.VideoFileClip(file_path)
|
55 |
-
audio_path =
|
56 |
video.audio.write_audiofile(audio_path)
|
|
|
57 |
file_path = audio_path
|
58 |
except Exception as e:
|
59 |
print(f"Error extracting audio from video: {e}")
|
60 |
raise
|
61 |
-
|
62 |
-
|
63 |
-
output_file = "output.json"
|
64 |
command = [
|
65 |
"insanely-fast-whisper",
|
66 |
"--file-name", file_path,
|
@@ -73,84 +80,62 @@ def transcribe_audio(file_path):
|
|
73 |
print(f"Executing command: {' '.join(command)}")
|
74 |
try:
|
75 |
result = subprocess.run(command, check=True, capture_output=True, text=True)
|
76 |
-
print(f"Standard output: {result.stdout}")
|
77 |
-
print(f"Error output: {result.stderr}")
|
78 |
except subprocess.CalledProcessError as e:
|
79 |
print(f"Error running insanely-fast-whisper: {e}")
|
80 |
-
print(f"Standard output: {e.stdout}")
|
81 |
-
print(f"Error output: {e.stderr}")
|
82 |
raise
|
83 |
-
|
84 |
try:
|
85 |
with open(output_file, "r") as f:
|
86 |
transcription = json.load(f)
|
87 |
except json.JSONDecodeError as e:
|
88 |
print(f"Error decoding JSON: {e}")
|
89 |
-
print(f"File content: {open(output_file, 'r').read()}")
|
90 |
raise
|
|
|
91 |
if "text" in transcription:
|
92 |
result = transcription["text"]
|
93 |
else:
|
94 |
result = " ".join([chunk["text"] for chunk in transcription.get("chunks", [])])
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
98 |
return result
|
99 |
|
100 |
@spaces.GPU(duration=60)
|
101 |
def generate_summary_stream(transcription):
|
102 |
print("Starting summary generation...")
|
103 |
-
print(f"Transcription length: {len(transcription)} characters")
|
104 |
-
|
105 |
detected_language = langdetect.detect(transcription)
|
106 |
|
107 |
prompt = f"""Summarize the following video transcription in 150-300 words.
|
108 |
The summary should be in the same language as the transcription, which is detected as {detected_language}.
|
109 |
Please ensure that the summary captures the main points and key ideas of the transcription:
|
110 |
|
111 |
-
{transcription[:
|
112 |
|
113 |
response, history = model.chat(tokenizer, prompt, history=[])
|
114 |
print(f"Final summary generated: {response[:100]}...")
|
115 |
-
print("Summary generation completed.")
|
116 |
return response
|
117 |
|
118 |
def process_youtube(url):
|
119 |
if not url:
|
120 |
-
print("YouTube URL not provided.")
|
121 |
return "Please enter a YouTube URL.", None
|
122 |
-
print(f"Processing YouTube URL: {url}")
|
123 |
-
audio_file = "youtube_audio.wav"
|
124 |
try:
|
125 |
-
download_youtube_audio(url
|
126 |
-
# Check if the file was renamed to .wav.wav
|
127 |
-
if os.path.exists(audio_file + ".wav"):
|
128 |
-
audio_file = audio_file + ".wav"
|
129 |
-
if not os.path.exists(audio_file):
|
130 |
-
raise FileNotFoundError(f"File {audio_file} does not exist after download.")
|
131 |
-
print(f"Audio file found: {audio_file}")
|
132 |
-
print("Starting transcription...")
|
133 |
transcription = transcribe_audio(audio_file)
|
134 |
-
print(f"Transcription completed. Length: {len(transcription)} characters")
|
135 |
return transcription, None
|
136 |
except Exception as e:
|
137 |
-
print(f"Error processing YouTube: {e}")
|
138 |
return f"Processing error: {str(e)}", None
|
139 |
finally:
|
140 |
-
|
141 |
-
os.remove(audio_file)
|
142 |
-
print(f"Directory content after processing: {os.listdir('.')}")
|
143 |
|
144 |
def process_uploaded_video(video_path):
|
145 |
-
print(f"Processing uploaded video: {video_path}")
|
146 |
try:
|
147 |
-
print("Starting transcription...")
|
148 |
transcription = transcribe_audio(video_path)
|
149 |
-
print(f"Transcription completed. Length: {len(transcription)} characters")
|
150 |
return transcription, None
|
151 |
except Exception as e:
|
152 |
-
print(f"Error processing video: {e}")
|
153 |
return f"Processing error: {str(e)}", None
|
|
|
|
|
154 |
|
155 |
print("Setting up Gradio interface...")
|
156 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
@@ -193,9 +178,7 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
193 |
def process_video_and_update(video):
|
194 |
if video is None:
|
195 |
return "No video uploaded.", "Please upload a video."
|
196 |
-
print(f"Video received: {video}")
|
197 |
transcription, _ = process_uploaded_video(video)
|
198 |
-
print(f"Returned transcription: {transcription[:100] if transcription else 'No transcription generated'}...")
|
199 |
return transcription or "Transcription error", ""
|
200 |
|
201 |
video_button.click(process_video_and_update, inputs=[video_input], outputs=[transcription_output, summary_output])
|
|
|
10 |
import moviepy.editor as mp
|
11 |
import time
|
12 |
import langdetect
|
13 |
+
import uuid
|
14 |
|
15 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
16 |
print("Starting the program...")
|
|
|
22 |
model = model.eval()
|
23 |
print("Model successfully loaded.")
|
24 |
|
25 |
+
def generate_unique_filename(extension):
|
26 |
+
return f"{uuid.uuid4()}{extension}"
|
27 |
+
|
28 |
+
def cleanup_file(file_path):
|
29 |
+
if os.path.exists(file_path):
|
30 |
+
os.remove(file_path)
|
31 |
+
print(f"Cleaned up file: {file_path}")
|
32 |
+
|
33 |
+
def download_youtube_audio(url):
|
34 |
print(f"Downloading audio from YouTube: {url}")
|
35 |
+
output_path = generate_unique_filename('.wav')
|
36 |
ydl_opts = {
|
37 |
'format': 'bestaudio/best',
|
38 |
'postprocessors': [{
|
|
|
44 |
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
45 |
ydl.download([url])
|
46 |
|
|
|
|
|
|
|
|
|
47 |
if os.path.exists(output_path):
|
48 |
print(f"Audio download completed. File saved at: {output_path}")
|
49 |
print(f"File size: {os.path.getsize(output_path)} bytes")
|
50 |
else:
|
51 |
print(f"Error: File {output_path} not found after download.")
|
52 |
+
|
53 |
+
return output_path
|
54 |
|
55 |
@spaces.GPU(duration=60)
|
56 |
def transcribe_audio(file_path):
|
|
|
59 |
print("Video file detected. Extracting audio...")
|
60 |
try:
|
61 |
video = mp.VideoFileClip(file_path)
|
62 |
+
audio_path = generate_unique_filename('.wav')
|
63 |
video.audio.write_audiofile(audio_path)
|
64 |
+
cleanup_file(file_path)
|
65 |
file_path = audio_path
|
66 |
except Exception as e:
|
67 |
print(f"Error extracting audio from video: {e}")
|
68 |
raise
|
69 |
+
|
70 |
+
output_file = generate_unique_filename('.json')
|
|
|
71 |
command = [
|
72 |
"insanely-fast-whisper",
|
73 |
"--file-name", file_path,
|
|
|
80 |
print(f"Executing command: {' '.join(command)}")
|
81 |
try:
|
82 |
result = subprocess.run(command, check=True, capture_output=True, text=True)
|
|
|
|
|
83 |
except subprocess.CalledProcessError as e:
|
84 |
print(f"Error running insanely-fast-whisper: {e}")
|
|
|
|
|
85 |
raise
|
86 |
+
|
87 |
try:
|
88 |
with open(output_file, "r") as f:
|
89 |
transcription = json.load(f)
|
90 |
except json.JSONDecodeError as e:
|
91 |
print(f"Error decoding JSON: {e}")
|
|
|
92 |
raise
|
93 |
+
|
94 |
if "text" in transcription:
|
95 |
result = transcription["text"]
|
96 |
else:
|
97 |
result = " ".join([chunk["text"] for chunk in transcription.get("chunks", [])])
|
98 |
+
|
99 |
+
cleanup_file(file_path)
|
100 |
+
cleanup_file(output_file)
|
101 |
+
|
102 |
return result
|
103 |
|
104 |
@spaces.GPU(duration=60)
|
105 |
def generate_summary_stream(transcription):
|
106 |
print("Starting summary generation...")
|
|
|
|
|
107 |
detected_language = langdetect.detect(transcription)
|
108 |
|
109 |
prompt = f"""Summarize the following video transcription in 150-300 words.
|
110 |
The summary should be in the same language as the transcription, which is detected as {detected_language}.
|
111 |
Please ensure that the summary captures the main points and key ideas of the transcription:
|
112 |
|
113 |
+
{transcription[:300000]}..."""
|
114 |
|
115 |
response, history = model.chat(tokenizer, prompt, history=[])
|
116 |
print(f"Final summary generated: {response[:100]}...")
|
|
|
117 |
return response
|
118 |
|
119 |
def process_youtube(url):
|
120 |
if not url:
|
|
|
121 |
return "Please enter a YouTube URL.", None
|
|
|
|
|
122 |
try:
|
123 |
+
audio_file = download_youtube_audio(url)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
transcription = transcribe_audio(audio_file)
|
|
|
125 |
return transcription, None
|
126 |
except Exception as e:
|
|
|
127 |
return f"Processing error: {str(e)}", None
|
128 |
finally:
|
129 |
+
cleanup_file(audio_file)
|
|
|
|
|
130 |
|
131 |
def process_uploaded_video(video_path):
|
|
|
132 |
try:
|
|
|
133 |
transcription = transcribe_audio(video_path)
|
|
|
134 |
return transcription, None
|
135 |
except Exception as e:
|
|
|
136 |
return f"Processing error: {str(e)}", None
|
137 |
+
finally:
|
138 |
+
cleanup_file(video_path)
|
139 |
|
140 |
print("Setting up Gradio interface...")
|
141 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
|
178 |
def process_video_and_update(video):
|
179 |
if video is None:
|
180 |
return "No video uploaded.", "Please upload a video."
|
|
|
181 |
transcription, _ = process_uploaded_video(video)
|
|
|
182 |
return transcription or "Transcription error", ""
|
183 |
|
184 |
video_button.click(process_video_and_update, inputs=[video_input], outputs=[transcription_output, summary_output])
|