artificialguybr commited on
Commit
f0bd898
1 Parent(s): b466771

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -2
app.py CHANGED
@@ -42,8 +42,8 @@ interface = gr.Interface(
42
  gr.Text(label="Negative Prompt"),
43
  gr.Slider(minimum=10, maximum=100, value=30, step=1, label="Number of Inference Steps"),
44
  gr.Slider(minimum=1, maximum=20, value=6, step=0.1, label="Guidance Scale"),
45
- gr.Slider(minimum=64, maximum=2048, value=1024, step=64, label="Height"),
46
- gr.Slider(minimum=64, maximum=2048, value=1024, step=64, label="Width"),
47
  ],
48
  outputs=gr.Image(label="Generated Image"),
49
  title="PixArt Sigma Image Generation",
@@ -52,6 +52,8 @@ interface = gr.Interface(
52
  PixArt-Sigma achieves superior image quality and alignment with prompts compared to previous models like [PixArt-alpha](https://github.com/PixArt-alpha/PixArt-sigma). It does so efficiently, evolving from PixArt-alpha through a process termed weak-to-strong training - leveraging higher quality data and an improved attention mechanism.
53
 
54
  With just 0.6 billion parameters, PixArt-Sigma reaches new heights in text-to-image generation. Output stunning, intricate 4K images for posters, wallpapers, concept art, and more. Guide the model with descriptive prompts and fine-tune parameters like guidance scale and number of inference steps.
 
 
55
  """,
56
  )
57
 
 
42
  gr.Text(label="Negative Prompt"),
43
  gr.Slider(minimum=10, maximum=100, value=30, step=1, label="Number of Inference Steps"),
44
  gr.Slider(minimum=1, maximum=20, value=6, step=0.1, label="Guidance Scale"),
45
+ gr.Slider(minimum=64, maximum=1024, value=1024, step=64, label="Height"),
46
+ gr.Slider(minimum=64, maximum=1024, value=1024, step=64, label="Width"),
47
  ],
48
  outputs=gr.Image(label="Generated Image"),
49
  title="PixArt Sigma Image Generation",
 
52
  PixArt-Sigma achieves superior image quality and alignment with prompts compared to previous models like [PixArt-alpha](https://github.com/PixArt-alpha/PixArt-sigma). It does so efficiently, evolving from PixArt-alpha through a process termed weak-to-strong training - leveraging higher quality data and an improved attention mechanism.
53
 
54
  With just 0.6 billion parameters, PixArt-Sigma reaches new heights in text-to-image generation. Output stunning, intricate 4K images for posters, wallpapers, concept art, and more. Guide the model with descriptive prompts and fine-tune parameters like guidance scale and number of inference steps.
55
+
56
+ For more information, visit the original [repository](https://github.com/PixArt-alpha/PixArt-sigma) and follow the HF Space creator on Twitter at [@artificialguybr](https://twitter.com/artificialguybr).
57
  """,
58
  )
59