artificialguybr's picture
Update app.py
be3c447 verified
import spaces
import os
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
import gradio as gr
from threading import Thread
MODEL = "THUDM/LongWriter-glm4-9b"
TITLE = "<h1><center>LongWriter-glm4-9b</center></h1>"
PLACEHOLDER = """
<center>
<p>Hi! I'm LongWriter-glm4-9b, capable of generating 10,000+ words. How can I assist you today?</p>
</center>
"""
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
h3 {
text-align: center;
}
"""
device = "cuda" if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained(MODEL, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(MODEL, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto")
model = model.eval()
@spaces.GPU
def stream_chat(
message: str,
history: list,
system_prompt: str,
temperature: float = 0.5,
max_new_tokens: int = 32768,
top_p: float = 1.0,
top_k: int = 50,
):
print(f'message: {message}')
print(f'history: {history}')
chat_history = []
for prompt, answer in history:
chat_history.append((prompt, answer))
response, _ = model.chat(
tokenizer,
message,
history=chat_history,
max_new_tokens=max_new_tokens,
top_p=top_p,
top_k=top_k,
temperature=temperature,
)
yield response
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)
with gr.Blocks(css=CSS, theme="soft") as demo:
gr.HTML(TITLE)
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
gr.ChatInterface(
fn=stream_chat,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Textbox(
value="You are a helpful assistant capable of generating long-form content.",
label="System Prompt",
render=False,
),
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.5,
label="Temperature",
render=False,
),
gr.Slider(
minimum=1024,
maximum=32768,
step=1024,
value=32768,
label="Max new tokens",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
label="Top p",
render=False,
),
gr.Slider(
minimum=1,
maximum=100,
step=1,
value=50,
label="Top k",
render=False,
),
],
examples=[
["Write a 10000-word comprehensive guide on artificial intelligence and its applications."],
["Create a detailed 5000-word business plan for a space tourism company."],
["Compose a 3000-word short story about time travel and its consequences."],
["Develop a 7000-word research proposal on the potential of quantum computing in cryptography."],
],
cache_examples=False,
)
if __name__ == "__main__":
demo.launch()