|
import gradio as gr |
|
import requests |
|
import json |
|
import os |
|
|
|
|
|
API_KEY = os.getenv('API_KEY') |
|
INVOKE_URL = "https://api.nvcf.nvidia.com/v2/nvcf/pexec/functions/0e349b44-440a-44e1-93e9-abe8dcb27158" |
|
FETCH_URL_FORMAT = "https://api.nvcf.nvidia.com/v2/nvcf/pexec/status/" |
|
headers = { |
|
"Authorization": f"Bearer {API_KEY}", |
|
"Accept": "application/json", |
|
"Content-Type": "application/json", |
|
} |
|
|
|
|
|
BASE_SYSTEM_MESSAGE = "I carefully provide accurate, factual, thoughtful, nuanced answers and am brilliant at reasoning." |
|
|
|
def call_nvidia_api(history, system_message, max_tokens, temperature, top_p): |
|
"""Calls the NVIDIA API to generate a response.""" |
|
messages = [{"role": "system", "content": system_message}] |
|
messages.extend([{"role": "user", "content": h[0]} for h in history]) |
|
|
|
payload = { |
|
"messages": messages, |
|
"temperature": temperature, |
|
"top_p": top_p, |
|
"max_tokens": max_tokens, |
|
"stream": False |
|
} |
|
print(f"Payload enviado: {json.dumps(payload, indent=2)}") |
|
session = requests.Session() |
|
response = session.post(INVOKE_URL, headers=headers, json=payload) |
|
while response.status_code == 202: |
|
request_id = response.headers.get("NVCF-REQID") |
|
fetch_url = FETCH_URL_FORMAT + request_id |
|
response = session.get(fetch_url, headers=headers) |
|
response.raise_for_status() |
|
response_body = response.json() |
|
print(f"Payload recebido: {json.dumps(response_body, indent=2)}") |
|
if response_body.get("choices"): |
|
assistant_message = response_body["choices"][0]["message"]["content"] |
|
return assistant_message |
|
else: |
|
return "Desculpe, ocorreu um erro ao gerar a resposta." |
|
|
|
def chatbot_submit(message, chat_history, system_message, max_tokens_val, temperature_val, top_p_val): |
|
"""Submits the user message to the chatbot and updates the chat history.""" |
|
print("Updating chatbot...") |
|
|
|
|
|
chat_history.append([message, ""]) |
|
|
|
|
|
assistant_message = call_nvidia_api(chat_history, system_message, max_tokens_val, temperature_val, top_p_val) |
|
|
|
|
|
chat_history[-1][1] = assistant_message |
|
|
|
return assistant_message, chat_history |
|
|
|
chat_history_state = gr.State([]) |
|
system_msg = gr.Textbox(BASE_SYSTEM_MESSAGE, label="System Message", placeholder="System prompt.", lines=5) |
|
max_tokens = gr.Slider(20, 1024, label="Max Tokens", step=20, value=1024) |
|
temperature = gr.Slider(0.0, 1.0, label="Temperature", step=0.1, value=0.2) |
|
top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.7) |
|
|
|
with gr.Blocks() as demo: |
|
chat_history_state = gr.State([]) |
|
chatbot = gr.ChatInterface( |
|
fn=chatbot_submit, |
|
additional_inputs=[system_msg, max_tokens, temperature, top_p], |
|
title="LLAMA 70B Free Demo", |
|
description=""" |
|
<div style="text-align: center; font-size: 1.5em; margin-bottom: 20px;"> |
|
<strong>Explore the Capabilities of LLAMA 2 70B</strong> |
|
</div> |
|
<p>Llama 2 is a large language AI model capable of generating text and code in response to prompts.</p> |
|
<p><strong>How to Use:</strong></p> |
|
<ol> |
|
<li>Enter your <strong>message</strong> in the textbox to start a conversation or ask a question.</li> |
|
<li>Adjust the parameters in the "Additional Inputs" accordion to control the model's behavior.</li> |
|
<li>Use the buttons below the chatbot to submit your query, clear the chat history, or perform other actions.</li> |
|
</ol> |
|
<p><strong>Powered by NVIDIA's cutting-edge AI API, LLAMA 2 70B offers an unparalleled opportunity to interact with an AI model of exceptional conversational ability, accessible to everyone at no cost.</strong></p> |
|
<p><strong>HF Created by:</strong> @artificialguybr (<a href="https://twitter.com/artificialguybr">Twitter</a>)</p> |
|
<p><strong>Discover more:</strong> <a href="https://artificialguy.com">artificialguy.com</a></p> |
|
""", |
|
submit_btn="Submit", |
|
clear_btn="🗑️ Clear", |
|
) |
|
|
|
def clear_chat(): |
|
chat_history_state.value = [] |
|
chatbot.textbox.value = "" |
|
|
|
chatbot.clear() |
|
demo.launch() |