artificialguybr's picture
Update app.py
9faed3d verified
raw
history blame
2.54 kB
import gradio as gr
import requests
import os
import json
API_KEY = os.getenv('API_KEY')
INVOKE_URL = "https://api.nvcf.nvidia.com/v2/nvcf/pexec/functions/0e349b44-440a-44e1-93e9-abe8dcb27158"
FETCH_URL_FORMAT = "https://api.nvcf.nvidia.com/v2/nvcf/pexec/status/"
headers = {
"Authorization": f"Bearer {API_KEY}",
"Accept": "application/json",
"Content-Type": "application/json",
}
BASE_SYSTEM_MESSAGE = "I carefully provide accurate, factual, thoughtful, nuanced answers and am brilliant at reasoning."
def call_nvidia_api(message, history_api, system_message, max_tokens, temperature, top_p):
messages = [{"role": "system", "content": system_message}] if system_message else []
messages.extend([{"role": "user", "content": msg[0]}, {"role": "assistant", "content": msg[1]} for msg in history_api])
payload = {
"messages": messages,
"temperature": temperature,
"top_p": top_p,
"max_tokens": max_tokens,
"stream": False
}
session = requests.Session()
response = session.post(INVOKE_URL, headers=headers, json=payload)
while response.status_code == 202:
request_id = response.headers.get("NVCF-REQID")
fetch_url = FETCH_URL_FORMAT + request_id
response = session.get(fetch_url, headers=headers)
response.raise_for_status()
response_body = response.json()
if response_body.get("choices"):
assistant_message = response_body["choices"][0]["message"]["content"]
return assistant_message
else:
return "Desculpe, ocorreu um erro ao gerar a resposta."
def chatbot_function(message, history_api, system_message, max_tokens, temperature, top_p):
assistant_message = call_nvidia_api(message, history_api, system_message, max_tokens, temperature, top_p)
history_api.append([message, assistant_message])
return assistant_message, history_api
system_msg = gr.Textbox(BASE_SYSTEM_MESSAGE, label="System Message", placeholder="System prompt.", lines=5)
max_tokens = gr.Slider(20, 1024, label="Max Tokens", step=20, value=1024)
temperature = gr.Slider(0.0, 1.0, label="Temperature", step=0.1, value=0.2)
top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.7)
with gr.Blocks() as demo:
chat_history_state = gr.State([])
chat_interface = gr.ChatInterface(
fn=chatbot_function,
chatbot=gr.Chatbot(history=chat_history_state),
additional_inputs=[system_msg, max_tokens, temperature, top_p],
title="LLAMA 70B Free Demo",
)
demo.launch()