|
import gradio as gr |
|
import requests |
|
import os |
|
import json |
|
|
|
API_KEY = os.getenv('API_KEY') |
|
INVOKE_URL = "https://api.nvcf.nvidia.com/v2/nvcf/pexec/functions/0e349b44-440a-44e1-93e9-abe8dcb27158" |
|
FETCH_URL_FORMAT = "https://api.nvcf.nvidia.com/v2/nvcf/pexec/status/" |
|
|
|
headers = { |
|
"Authorization": f"Bearer {API_KEY}", |
|
"Accept": "application/json", |
|
"Content-Type": "application/json", |
|
} |
|
|
|
BASE_SYSTEM_MESSAGE = "I carefully provide accurate, factual, thoughtful, nuanced answers and am brilliant at reasoning." |
|
|
|
def call_nvidia_api(message, history_api, system_message, max_tokens, temperature, top_p): |
|
messages = [{"role": "system", "content": system_message}] if system_message else [] |
|
messages.extend([{"role": "user", "content": msg[0]}, {"role": "assistant", "content": msg[1]} for msg in history_api]) |
|
|
|
payload = { |
|
"messages": messages, |
|
"temperature": temperature, |
|
"top_p": top_p, |
|
"max_tokens": max_tokens, |
|
"stream": False |
|
} |
|
|
|
session = requests.Session() |
|
response = session.post(INVOKE_URL, headers=headers, json=payload) |
|
while response.status_code == 202: |
|
request_id = response.headers.get("NVCF-REQID") |
|
fetch_url = FETCH_URL_FORMAT + request_id |
|
response = session.get(fetch_url, headers=headers) |
|
response.raise_for_status() |
|
response_body = response.json() |
|
|
|
if response_body.get("choices"): |
|
assistant_message = response_body["choices"][0]["message"]["content"] |
|
return assistant_message |
|
else: |
|
return "Desculpe, ocorreu um erro ao gerar a resposta." |
|
|
|
def chatbot_function(message, history_api, system_message, max_tokens, temperature, top_p): |
|
assistant_message = call_nvidia_api(message, history_api, system_message, max_tokens, temperature, top_p) |
|
history_api.append([message, assistant_message]) |
|
return assistant_message, history_api |
|
|
|
system_msg = gr.Textbox(BASE_SYSTEM_MESSAGE, label="System Message", placeholder="System prompt.", lines=5) |
|
max_tokens = gr.Slider(20, 1024, label="Max Tokens", step=20, value=1024) |
|
temperature = gr.Slider(0.0, 1.0, label="Temperature", step=0.1, value=0.2) |
|
top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.7) |
|
|
|
with gr.Blocks() as demo: |
|
chat_history_state = gr.State([]) |
|
chat_interface = gr.ChatInterface( |
|
fn=chatbot_function, |
|
chatbot=gr.Chatbot(history=chat_history_state), |
|
additional_inputs=[system_msg, max_tokens, temperature, top_p], |
|
title="LLAMA 70B Free Demo", |
|
) |
|
|
|
demo.launch() |
|
|