artificialguybr's picture
Update app.py
9b6b2fb verified
raw
history blame
3.03 kB
import gradio as gr
import requests
import os
import base64
from PIL import Image
import io
api_key = os.getenv('API_KEY')
def resize_image(image_path, max_size=(800, 800), quality=85):
with Image.open(image_path) as img:
img.thumbnail(max_size, Image.Resampling.LANCZOS)
buffer = io.BytesIO()
img.save(buffer, format="JPEG", quality=quality)
return buffer.getvalue()
def filepath_to_base64(image_path):
img_bytes = resize_image(image_path)
img_base64 = base64.b64encode(img_bytes)
return img_base64.decode('utf-8')
def format_response(response_body):
content = response_body['choices'][0]['message']['content']
formatted_content = content.replace("<0x0A>", "\n")
return formatted_content
def call_deplot_api(image_path, content, temperature=0.2, top_p=0.7, max_tokens=1024):
image_base64 = filepath_to_base64(image_path)
invoke_url = "https://api.nvcf.nvidia.com/v2/nvcf/pexec/functions/3bc390c7-eeec-40f7-a64d-0c6a719985f7"
api_key = os.getenv('API_KEY')
headers = {
"Authorization": f"Bearer {api_key}",
"Accept": "application/json",
}
payload = {
"messages": [
{
"content": f"{content} <img src=\"data:image/jpeg;base64,{image_base64}\" />",
"role": "user"
}
],
"temperature": temperature,
"top_p": top_p,
"max_tokens": max_tokens,
"stream": False
}
session = requests.Session()
response = session.post(invoke_url, headers=headers, json=payload)
while response.status_code == 202:
request_id = response.headers.get("NVCF-REQID")
fetch_url = f"https://api.nvcf.nvidia.com/v2/nvcf/pexec/status/{request_id}"
response = session.get(fetch_url, headers=headers)
response.raise_for_status()
response_body = response.json()
return format_response(response_body)
content_input = gr.Textbox(lines=2, placeholder="Enter your content here...", label="Content")
image_input = gr.Image(type="filepath", label="Upload Image")
temperature_input = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.2, label="Temperature")
top_p_input = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.7, label="Top P")
max_tokens_input = gr.Slider(minimum=1, maximum=1024, step=1, value=1024, label="Max Tokens")
iface = gr.Interface(fn=call_deplot_api,
inputs=[image_input, content_input, temperature_input, top_p_input, max_tokens_input],
outputs="text",
title="Google DePlot API Explorer",
description="""
<div style="text-align: center; font-size: 1.5em; margin-bottom: 20px;">
<strong>Explore Visual Language Understanding with Google DePlot</strong>
</div>
<p>
Utilize Google DePlot to translate images of plots or charts into linearized tables. This one-shot visual language understanding solution offers a unique approach to interpreting visual data.
</p>
"""
)
iface.launch()