|
import gradio as gr |
|
import requests |
|
import os |
|
import base64 |
|
from PIL import Image |
|
import io |
|
|
|
api_key = os.getenv('API_KEY') |
|
|
|
|
|
def resize_image(image_path, max_size=(800, 800), quality=85): |
|
with Image.open(image_path) as img: |
|
img.thumbnail(max_size, Image.Resampling.LANCZOS) |
|
buffer = io.BytesIO() |
|
img.save(buffer, format="JPEG", quality=quality) |
|
return buffer.getvalue() |
|
|
|
def filepath_to_base64(image_path): |
|
img_bytes = resize_image(image_path) |
|
img_base64 = base64.b64encode(img_bytes) |
|
return img_base64.decode('utf-8') |
|
|
|
def format_response(response_body): |
|
content = response_body['choices'][0]['message']['content'] |
|
formatted_content = content.replace("<0x0A>", "\n") |
|
return formatted_content |
|
|
|
def call_deplot_api(image_path, content, temperature=0.2, top_p=0.7, max_tokens=1024): |
|
image_base64 = filepath_to_base64(image_path) |
|
invoke_url = "https://api.nvcf.nvidia.com/v2/nvcf/pexec/functions/3bc390c7-eeec-40f7-a64d-0c6a719985f7" |
|
api_key = os.getenv('API_KEY') |
|
headers = { |
|
"Authorization": f"Bearer {api_key}", |
|
"Accept": "application/json", |
|
} |
|
payload = { |
|
"messages": [ |
|
{ |
|
"content": f"{content} <img src=\"data:image/jpeg;base64,{image_base64}\" />", |
|
"role": "user" |
|
} |
|
], |
|
"temperature": temperature, |
|
"top_p": top_p, |
|
"max_tokens": max_tokens, |
|
"stream": False |
|
} |
|
session = requests.Session() |
|
response = session.post(invoke_url, headers=headers, json=payload) |
|
while response.status_code == 202: |
|
request_id = response.headers.get("NVCF-REQID") |
|
fetch_url = f"https://api.nvcf.nvidia.com/v2/nvcf/pexec/status/{request_id}" |
|
response = session.get(fetch_url, headers=headers) |
|
response.raise_for_status() |
|
response_body = response.json() |
|
return format_response(response_body) |
|
|
|
content_input = gr.Textbox(lines=2, placeholder="Enter your content here...", label="Content") |
|
image_input = gr.Image(type="filepath", label="Upload Image") |
|
temperature_input = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.2, label="Temperature") |
|
top_p_input = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.7, label="Top P") |
|
max_tokens_input = gr.Slider(minimum=1, maximum=1024, step=1, value=1024, label="Max Tokens") |
|
|
|
iface = gr.Interface(fn=call_deplot_api, |
|
inputs=[image_input, content_input, temperature_input, top_p_input, max_tokens_input], |
|
outputs="text", |
|
title="Google DePlot API Explorer", |
|
description=""" |
|
<div style="text-align: center; font-size: 1.5em; margin-bottom: 20px;"> |
|
<strong>Explore Visual Language Understanding with Google DePlot</strong> |
|
</div> |
|
<p> |
|
Utilize Google DePlot to translate images of plots or charts into linearized tables. This one-shot visual language understanding solution offers a unique approach to interpreting visual data. |
|
</p> |
|
""" |
|
) |
|
|
|
iface.launch() |
|
|