Spaces:
Running
Running
import random | |
from pricegenerator.PriceGenerator import PriceGenerator, uLogger | |
from datetime import datetime, timedelta | |
import gradio as gr | |
import pandas as pd | |
import pickle | |
import matplotlib.pyplot as plt | |
import mplfinance as mpf | |
import numpy as np | |
from PIL import Image | |
import io | |
from sklearn.preprocessing import StandardScaler | |
import requests | |
import time | |
def download_model(): | |
model_url = "https://huggingface.co/artbreguez/BinaryOptionsXGB/resolve/main/eurusd.pkl?download=true" | |
response = requests.get(model_url, stream=True) | |
if response.status_code == 200: | |
with open('eurusd.pkl', 'wb') as f: | |
for chunk in response.iter_content(1024): | |
f.write(chunk) | |
print("Modelo baixado com sucesso!") | |
return True | |
else: | |
print("Erro ao baixar o modelo:", response.status_code) | |
return False | |
download_success = download_model() | |
if download_success: | |
with open('eurusd.pkl', 'rb') as f: | |
content = f.read() | |
with open('eurusd.pkl', 'rb') as f: | |
model = pickle.load(f) | |
else: | |
print("Download do modelo falhou.") | |
def generate_candle_image(df, predicao): | |
df['DateTime'] = pd.to_datetime(df['DateTime']) | |
df.set_index('DateTime', inplace=True) | |
prox_candle = pd.DataFrame(index=[df.index[-1] + pd.Timedelta(hours=1)]) | |
prox_candle['Open'] = df['Close'].iloc[-1] | |
if predicao[0] == 1: # Predição positiva | |
prox_candle['Close'] = prox_candle['Open'] + 0.01 | |
prox_candle['High'] = prox_candle['Open'] + 0.01 | |
prox_candle['Low'] = prox_candle['Open'] | |
else: # Predição negativa | |
prox_candle['Close'] = prox_candle['Open'] - 0.01 | |
prox_candle['High'] = prox_candle['Open'] | |
prox_candle['Low'] = prox_candle['Open'] - 0.01 | |
prox_candle['Volume'] = 0 | |
df_combined = pd.concat([df, prox_candle]) | |
nans = [float('nan')]*len(df_combined) | |
cdf = pd.DataFrame(dict(Open=nans, High=nans, Low=nans, Close=nans), index=df_combined.index) | |
cdf.loc[df_combined.index[-1]] = df_combined.loc[df_combined.index[-1]] | |
mc = mpf.make_marketcolors(up='green', down='red') | |
s = mpf.make_mpf_style(marketcolors=mc) | |
fig, axlist = mpf.plot(df_combined, type='candle', volume=True, returnfig=True, ylabel_lower='Volume', title='EUR/USD Price Chart') | |
mpf.plot(cdf, type='candle', style=s, ax=axlist[0]) | |
img_bytes = io.BytesIO() | |
plt.savefig(img_bytes, format='png') | |
img_bytes.seek(0) | |
img_pil = Image.open(img_bytes) | |
return img_pil | |
def predict(X_2d): | |
return model.predict(X_2d) | |
def generate_array(df): | |
features = df.drop(columns=['DateTime']) | |
scaler = StandardScaler() | |
normalized_features = scaler.fit_transform(features) | |
df_normalized = pd.DataFrame(normalized_features, columns=features.columns, index=df.index) | |
X = df_normalized.iloc[-1].values # Obtém apenas os valores dos recursos normalizados | |
X_2d = np.array(X).reshape(1, -1) | |
return X_2d | |
def calculate_bollinger_bands(df, period=20): | |
df['SMA'] = df['Close'].rolling(window=period).mean() | |
df['STD'] = df['Close'].rolling(window=period).std() | |
df['Upper'] = df['SMA'] + (2 * df['STD']) | |
df['Lower'] = df['SMA'] - (2 * df['STD']) | |
return df | |
def calculate_stochastic_oscillator(df, period=14): | |
low_min = df['Low'].rolling(window=period).min() | |
high_max = df['High'].rolling(window=period).max() | |
close_diff = df['Close'] - low_min | |
high_diff = high_max - low_min | |
stoch = close_diff / high_diff * 100 | |
df['Stochastic'] = stoch | |
return df | |
def calculate_rsi(df, period=14): | |
diff = df['Close'].diff() | |
gain = diff.where(diff > 0, 0) | |
loss = -diff.where(diff < 0, 0) | |
ema_gain = gain.ewm(alpha=1/period, min_periods=period, adjust=False).mean() | |
ema_loss = loss.ewm(alpha=1/period, min_periods=period, adjust=False).mean() | |
rs = ema_gain / ema_loss | |
rsi = 100 - (100 / (1 + rs)) | |
df['RSI'] = rsi | |
return df | |
def process_data(file_path): | |
with open(file_path, 'r') as f: | |
data = f.readlines() | |
data = [line.strip().split(',') for line in data] | |
df = pd.DataFrame(data, columns=['Date', 'Time', 'Open', 'High', 'Low', 'Close', 'Volume']) | |
numeric_columns = ['Open', 'High', 'Low', 'Close', 'Volume'] | |
df[numeric_columns] = df[numeric_columns].astype(float) | |
df['DateTime'] = pd.to_datetime(df['Date'] + ' ' + df['Time']) | |
df.set_index('DateTime', inplace=True) | |
df = calculate_bollinger_bands(df) | |
df = calculate_stochastic_oscillator(df) | |
df = calculate_rsi(df) | |
df.drop(['Date', 'Time', 'STD'], axis=1, inplace=True) | |
processed_file_path = file_path.replace('.csv', '_processed.csv') | |
df.to_csv(processed_file_path) | |
return df | |
def generate_graph_data(): | |
uLogger.setLevel(0) | |
priceModel = PriceGenerator() | |
priceModel.precision = 5 # 5 casas decimais para maior precisão | |
priceModel.ticker = "EURUSD" # par de moedas EUR/USD | |
priceModel.timeframe = timedelta(hours=1) # intervalo de tempo entre os candles, 1 dia | |
priceModel.timeStart = datetime.today() - timedelta(days=1) # dados do último ano | |
priceModel.horizon = 24 # 24 candles, correspondendo a um dia de dados | |
priceModel.maxClose = 1.25 # Maior preço de fechamento, similar aos preços do EUR/USD | |
priceModel.minClose = 1.05 # Menor preço de fechamento, similar aos preços do EUR/USD | |
priceModel.initClose = None # Preço inicial aleatório dentro do intervalo (minClose, maxClose) | |
priceModel.maxOutlier = 0.01 # Máximo desvio para outliers, similar aos preços do EUR/USD | |
priceModel.maxCandleBody = None # Sem limite para o tamanho do corpo dos candles | |
priceModel.maxVolume = 500000 # Volume máximo, valor arbitrário | |
priceModel.upCandlesProb = 0.5 # Probabilidade de candle de alta de 50% | |
priceModel.outliersProb = 0.03 # Probabilidade de outliers de 3% | |
priceModel.trendDeviation = 0.0005 # Desvio para definir tendência, valor pequeno | |
priceModel.zigzag = 0.01 # Diferença entre pontos do indicador ZigZag | |
priceModel._chartTitle = "EUR/USD Price Chart" # Título do gráfico | |
priceModel.Generate() | |
priceModel.SaveToFile(fileName="eur_usd_prices.csv") | |
def generate_predictions(): | |
generate_graph_data() | |
df = process_data('eur_usd_prices.csv') | |
df = pd.read_csv('eur_usd_prices_processed.csv') | |
x_d2 = generate_array(df) | |
prediction = predict(x_d2) | |
image = generate_candle_image(df, prediction) | |
return image | |
outputs = gr.Image(type='pil', label='label') | |
inputs = None | |
title = "📈 Binary Options Predictor 📈" | |
description = """ | |
This tool generates a simulated candlestick chart for EUR/USD. If the next candlestick is green, it indicates that the next candle will be positive; however, for red, it indicates that the next candle will be negative. | |
""" | |
gr.Interface(generate_predictions, inputs, outputs, title=title, description=description).launch(debug=False) |