Nazarshia2889
quick change
caf1c7c
raw
history blame
3.55 kB
import streamlit as st
from transformers import TFAutoModelForSequenceClassification
from transformers import AutoTokenizer
import pandas as pd
# title
st.title('Ravens AI')
# text input with label
sequence = st.text_input('Enter Peptide')
model_type = st.radio(
"Choose Linear Epitope Classifier",
('Linear T-Cells (MHC Class I Restriction)', 'Linear T-Cells (MHC Class II Restriction)', 'Linear B-Cell'))
model_checkpoint = "facebook/esm2_t6_8M_UR50D"
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
if model_type == 'Linear T-Cells (MHC Class I Restriction)':
model = TFAutoModelForSequenceClassification.from_pretrained('classifier')
elif model_type == 'Linear T-Cells (MHC Class II Restriction)':
model = TFAutoModelForSequenceClassification.from_pretrained('classifier2')
elif model_type == 'Linear B-Cell':
model = TFAutoModelForSequenceClassification.from_pretrained('bcell')
# propep = st.radio(
# "Scan over an entire protein or run a peptide sequence?",
# ('Protein', 'Peptide'))
# if propep == 'Peptide':
threshold = st.slider('Probability Threshold', 0.0, 1.0, 0.5)
if st.button('Submit'):
locations = []
peptide_name = sequence
peptide = tokenizer(peptide_name, return_tensors="tf")
output = model(peptide)
locations.append([peptide_name, output.logits.numpy()[0][0]])
locations = pd.DataFrame(locations, columns = ['Peptide', 'Probability'])
# display table with sequence and probability as the headers
def color_survived(x: float): # x between 0 and 1
# red to green scale based on x
# 0 -> red
# 0.5 -> clear
# 1 -> green
# red
if x < threshold:
r = 179
g = 40
b = 2
# green
else:
r = 18
g = 150
b = 6
return f'background-color: rgb({r}, {g}, {b})'
st.table(locations.style.applymap(color_survived, subset=['Probability']))
# elif propep == 'Protein':
# # windows length slider
# length = st.slider('Window Length', 1, 50, 10)
# threshold = st.slider('Probability Threshold', 0.0, 1.0, 0.75)
# # submit button
# if st.button('Submit'):
# if(length > len(sequence)):
# st.write("Please make sure that your window length is less than the sequence length!")
# else:
# # run model
# locations = []
# for i in range(len(sequence) - length + 1):
# peptide_name = sequence[i:i+length]
# peptide = tokenizer(peptide_name, return_tensors="tf")
# output = model(peptide)
# locations.append([peptide_name, output.logits.numpy()[0][0]])
# locations = pd.DataFrame(locations, columns = ['Peptide', 'Probability'])
# # display table with sequence and probability as the headers
# def color_survived(x: float): # x between 0 and 1
# # red to green scale based on x
# # 0 -> red
# # 0.5 -> clear
# # 1 -> green
# # red
# if x < threshold:
# r = 179
# g = 40
# b = 2
# # green
# else:
# r = 18
# g = 150
# b = 6
# return f'background-color: rgb({r}, {g}, {b})'
# st.table(locations.style.applymap(color_survived, subset=['Probability']))