Spaces:
Runtime error
Runtime error
arousrihab
commited on
Commit
•
22a5607
1
Parent(s):
2828552
Upload 3 files
Browse files- extractive.py +61 -0
- requirements.txt +6 -0
- utils.py +9 -0
extractive.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# extractive.py
|
2 |
+
import nltk
|
3 |
+
from nltk.corpus import stopwords
|
4 |
+
from nltk.tokenize import sent_tokenize
|
5 |
+
import networkx as nx
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
|
9 |
+
nltk.download('stopwords')
|
10 |
+
nltk.download('punkt')
|
11 |
+
|
12 |
+
def preprocess_text(text):
|
13 |
+
sentences = sent_tokenize(text)
|
14 |
+
return sentences
|
15 |
+
|
16 |
+
def get_sentence_embeddings(sentences, model, tokenizer):
|
17 |
+
embeddings = []
|
18 |
+
with torch.no_grad():
|
19 |
+
for sentence in sentences:
|
20 |
+
inputs = tokenizer(sentence, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
21 |
+
outputs = model(**inputs)
|
22 |
+
sentence_embedding = torch.mean(outputs.last_hidden_state, dim=1)
|
23 |
+
embeddings.append(sentence_embedding.squeeze().numpy())
|
24 |
+
return np.array(embeddings)
|
25 |
+
|
26 |
+
def build_semantic_graph(embeddings, similarity_threshold=0.75):
|
27 |
+
graph = nx.Graph()
|
28 |
+
for i, emb1 in enumerate(embeddings):
|
29 |
+
for j, emb2 in enumerate(embeddings):
|
30 |
+
if i != j:
|
31 |
+
similarity = np.dot(emb1, emb2) / (np.linalg.norm(emb1) * np.linalg.norm(emb2))
|
32 |
+
if similarity >= similarity_threshold:
|
33 |
+
graph.add_edge(i, j, weight=similarity)
|
34 |
+
return graph
|
35 |
+
|
36 |
+
def apply_textrank(graph, sentences, damping_factor=0.85, max_iter=100):
|
37 |
+
num_nodes = len(sentences)
|
38 |
+
personalization = {i: 1 / num_nodes for i in range(num_nodes)}
|
39 |
+
scores = nx.pagerank(graph, personalization=personalization, max_iter=max_iter)
|
40 |
+
ranked_sentences = sorted(((score, idx) for idx, score in scores.items()), reverse=True)
|
41 |
+
return ranked_sentences
|
42 |
+
|
43 |
+
def generate_summary(ranked_sentences, sentences, max_length_ratio=0.5):
|
44 |
+
stop_words = set(stopwords.words('english'))
|
45 |
+
summary = []
|
46 |
+
current_length = 0
|
47 |
+
total_length = sum(len(sentence.split()) for sentence in sentences)
|
48 |
+
max_length = int(total_length * max_length_ratio)
|
49 |
+
|
50 |
+
for score, idx in ranked_sentences:
|
51 |
+
sentence = sentences[idx]
|
52 |
+
sentence_length = len(sentence.split())
|
53 |
+
sentence_words = [word for word in sentence.split() if word.lower() not in stop_words]
|
54 |
+
|
55 |
+
if current_length + sentence_length <= max_length:
|
56 |
+
summary.append(" ".join(sentence_words))
|
57 |
+
current_length += sentence_length
|
58 |
+
else:
|
59 |
+
break
|
60 |
+
|
61 |
+
return " ".join(summary)
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
spacy
|
3 |
+
torch
|
4 |
+
transformers
|
5 |
+
nltk
|
6 |
+
networkx
|
utils.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# utils.py
|
2 |
+
import spacy
|
3 |
+
|
4 |
+
nlp = spacy.load("en-core-sci-lg")
|
5 |
+
|
6 |
+
def extract_named_entities(text):
|
7 |
+
doc = nlp(text)
|
8 |
+
entities = [(ent.text) for ent in doc.ents]
|
9 |
+
return entities
|