Spaces:
Runtime error
Runtime error
# Copyright 2024 EPFL and Apple Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# DISCLAIMER: This code is strongly influenced by https://github.com/lucidrains/vector-quantize-pytorch | |
import torch | |
from torch import nn, einsum | |
import torch.nn.functional as F | |
import torch.distributed as distributed | |
from torch.cuda.amp import autocast | |
from einops import rearrange, repeat | |
from contextlib import contextmanager | |
def exists(val): | |
return val is not None | |
def default(val, d): | |
return val if exists(val) else d | |
def noop(*args, **kwargs): | |
pass | |
def l2norm(t): | |
return F.normalize(t, p = 2, dim = -1) | |
def log(t, eps = 1e-20): | |
return torch.log(t.clamp(min = eps)) | |
def uniform_init(*shape): | |
t = torch.empty(shape) | |
nn.init.kaiming_uniform_(t) | |
return t | |
def gumbel_noise(t): | |
noise = torch.zeros_like(t).uniform_(0, 1) | |
return -log(-log(noise)) | |
def gumbel_sample(t, temperature = 1., dim = -1): | |
if temperature == 0: | |
return t.argmax(dim = dim) | |
return ((t / temperature) + gumbel_noise(t)).argmax(dim = dim) | |
def ema_inplace(moving_avg, new, decay): | |
moving_avg.data.mul_(decay).add_(new, alpha = (1 - decay)) | |
def laplace_smoothing(x, n_categories, eps = 1e-5): | |
return (x + eps) / (x.sum() + n_categories * eps) | |
def sample_vectors(samples, num): | |
num_samples, device = samples.shape[0], samples.device | |
if num_samples >= num: | |
indices = torch.randperm(num_samples, device = device)[:num] | |
else: | |
indices = torch.randint(0, num_samples, (num,), device = device) | |
return samples[indices] | |
def pad_shape(shape, size, dim = 0): | |
return [size if i == dim else s for i, s in enumerate(shape)] | |
def sample_multinomial(total_count, probs): | |
device = probs.device | |
probs = probs.cpu() | |
total_count = probs.new_full((), total_count) | |
remainder = probs.new_ones(()) | |
sample = torch.empty_like(probs, dtype = torch.long) | |
for i, p in enumerate(probs): | |
s = torch.binomial(total_count, p / remainder) | |
sample[i] = s | |
total_count -= s | |
remainder -= p | |
return sample.to(device) | |
def all_gather_sizes(x, dim): | |
size = torch.tensor(x.shape[dim], dtype = torch.long, device = x.device) | |
all_sizes = [torch.empty_like(size) for _ in range(distributed.get_world_size())] | |
distributed.all_gather(all_sizes, size) | |
return torch.stack(all_sizes) | |
def all_gather_variably_sized(x, sizes, dim = 0): | |
rank = distributed.get_rank() | |
all_x = [] | |
for i, size in enumerate(sizes): | |
t = x if i == rank else x.new_empty(pad_shape(x.shape, size, dim)) | |
distributed.broadcast(t, src = i, async_op = True) | |
all_x.append(t) | |
distributed.barrier() | |
return all_x | |
def sample_vectors_distributed(local_samples, num): | |
rank = distributed.get_rank() | |
all_num_samples = all_gather_sizes(local_samples, dim = 0) | |
if rank == 0: | |
samples_per_rank = sample_multinomial(num, all_num_samples / all_num_samples.sum()) | |
else: | |
samples_per_rank = torch.empty_like(all_num_samples) | |
distributed.broadcast(samples_per_rank, src = 0) | |
samples_per_rank = samples_per_rank.tolist() | |
local_samples = sample_vectors(local_samples, samples_per_rank[rank]) | |
all_samples = all_gather_variably_sized(local_samples, samples_per_rank, dim = 0) | |
return torch.cat(all_samples, dim = 0) | |
def add_noise(x, eps=1e-10): | |
return x + torch.randn_like(x) * eps | |
def add_noise_distributed(x, eps=1e-10): | |
if distributed.get_rank() == 0: | |
randn_noise = torch.randn_like(x) | |
else: | |
randn_noise = torch.empty_like(x) | |
distributed.broadcast(randn_noise, src = 0) | |
return x + randn_noise * eps | |
def kmeans(samples, num_clusters, num_iters = 10, use_cosine_sim = False, | |
sample_fn = sample_vectors, all_reduce_fn = noop): | |
dim, dtype, device = samples.shape[-1], samples.dtype, samples.device | |
means = sample_fn(samples, num_clusters) | |
for _ in range(num_iters): | |
if use_cosine_sim: | |
dists = samples @ means.t() | |
else: | |
diffs = rearrange(samples, 'n d -> n () d') \ | |
- rearrange(means, 'c d -> () c d') | |
dists = -(diffs ** 2).sum(dim = -1) | |
buckets = torch.argmax(dists, dim = -1) | |
bins = torch.bincount(buckets, minlength = num_clusters) | |
all_reduce_fn(bins) | |
zero_mask = bins == 0 | |
bins_min_clamped = bins.masked_fill(zero_mask, 1) | |
new_means = buckets.new_zeros(num_clusters, dim, dtype = dtype) | |
new_means.scatter_add_(0, repeat(buckets, 'n -> n d', d = dim), samples) | |
new_means = new_means / bins_min_clamped[..., None] | |
all_reduce_fn(new_means) | |
if use_cosine_sim: | |
new_means = l2norm(new_means) | |
means = torch.where(zero_mask[..., None], means, new_means) | |
return means, bins | |
# regularization losses | |
def orthgonal_loss_fn(t): | |
# eq (2) from https://arxiv.org/abs/2112.00384 | |
n = t.shape[0] | |
normed_codes = l2norm(t) | |
identity = torch.eye(n, device = t.device) | |
cosine_sim = einsum('i d, j d -> i j', normed_codes, normed_codes) | |
return ((cosine_sim - identity) ** 2).sum() / (n ** 2) | |
# distance types | |
class EuclideanCodebook(nn.Module): | |
def __init__( | |
self, | |
dim, | |
codebook_size, | |
kmeans_init = False, | |
kmeans_iters = 10, | |
decay = 0.8, | |
eps = 1e-5, | |
threshold_ema_dead_code = 2, | |
code_replacement_policy = 'batch_random', # batch_random or linde_buzo_gray | |
use_ddp = False, | |
learnable_codebook = False, | |
sample_codebook_temp = 0 | |
): | |
super().__init__() | |
self.decay = decay | |
init_fn = uniform_init if not kmeans_init else torch.zeros | |
embed = init_fn(codebook_size, dim) | |
self.codebook_size = codebook_size | |
self.kmeans_iters = kmeans_iters | |
self.eps = eps | |
self.threshold_ema_dead_code = threshold_ema_dead_code | |
self.code_replacement_policy = code_replacement_policy | |
self.sample_codebook_temp = sample_codebook_temp | |
self.sample_fn = sample_vectors_distributed if use_ddp else sample_vectors | |
self.all_reduce_fn = distributed.all_reduce if use_ddp else noop | |
self.add_noise_fn = add_noise_distributed if use_ddp else add_noise | |
self.register_buffer('initted', torch.Tensor([not kmeans_init])) | |
self.register_buffer('cluster_size', torch.zeros(codebook_size)) | |
self.register_buffer('embed_avg', embed.clone()) | |
self.learnable_codebook = learnable_codebook | |
if learnable_codebook: | |
self.embed = nn.Parameter(embed) | |
else: | |
self.register_buffer('embed', embed) | |
def init_embed_(self, data): | |
if self.initted: | |
return | |
embed, cluster_size = kmeans(data, self.codebook_size, self.kmeans_iters, | |
sample_fn = self.sample_fn, all_reduce_fn = self.all_reduce_fn) | |
self.embed.data.copy_(embed) | |
self.embed_avg.data.copy_(embed.clone()) | |
self.cluster_size.data.copy_(cluster_size) | |
self.initted.data.copy_(torch.Tensor([True])) | |
def replace_batch_random(self, samples, mask): | |
samples = l2norm(samples) | |
self.embed.data[mask] = self.sample_fn(samples, mask.sum().item()) | |
def replace_linde_buzo_gray(self, mask): | |
num_unused = mask.sum() | |
most_used_idxs = self.cluster_size.argsort(descending=True)[:num_unused] | |
most_used_codes = self.embed.data[most_used_idxs] | |
self.embed.data[mask] = l2norm(self.add_noise_fn(most_used_codes)) | |
def expire_codes_(self, batch_samples): | |
if self.threshold_ema_dead_code == 0: | |
return | |
expired_codes = self.cluster_size < self.threshold_ema_dead_code | |
if not torch.any(expired_codes): | |
return | |
if self.code_replacement_policy == 'batch_random': | |
# Replace dead codes by random latents from encoder | |
batch_samples = rearrange(batch_samples, '... d -> (...) d') | |
self.replace_batch_random(batch_samples, mask = expired_codes) | |
elif self.code_replacement_policy == 'linde_buzo_gray': | |
# Replace dead codes by most used codes + some noise (Linde-Buzo-Gray splitting algorithm) | |
self.replace_linde_buzo_gray(mask = expired_codes) | |
else: | |
raise ValueError(f'{self.code_replacement_policy} is not a valid dead code replacement strategy.') | |
def forward(self, x): | |
x = x.float() | |
shape, dtype = x.shape, x.dtype | |
flatten = rearrange(x, '... d -> (...) d') | |
self.init_embed_(flatten) | |
embed = self.embed if not self.learnable_codebook else self.embed.detach() | |
embed = self.embed.t() | |
dist = -( | |
flatten.pow(2).sum(1, keepdim=True) | |
- 2 * flatten @ embed | |
+ embed.pow(2).sum(0, keepdim=True) | |
) | |
embed_ind = gumbel_sample(dist, dim = -1, temperature = self.sample_codebook_temp) | |
embed_onehot = F.one_hot(embed_ind, self.codebook_size).type(dtype) | |
embed_ind = embed_ind.view(*shape[:-1]) | |
quantize = F.embedding(embed_ind, self.embed) | |
if self.training: | |
cluster_size = embed_onehot.sum(0) | |
self.all_reduce_fn(cluster_size) | |
ema_inplace(self.cluster_size, cluster_size, self.decay) | |
embed_sum = flatten.t() @ embed_onehot | |
self.all_reduce_fn(embed_sum) | |
ema_inplace(self.embed_avg, embed_sum.t(), self.decay) | |
cluster_size = laplace_smoothing(self.cluster_size, self.codebook_size, self.eps) * self.cluster_size.sum() | |
embed_normalized = self.embed_avg / cluster_size.unsqueeze(1) | |
self.embed.data.copy_(embed_normalized) | |
self.expire_codes_(x) | |
return quantize, embed_ind | |
class CosineSimCodebook(nn.Module): | |
def __init__( | |
self, | |
dim, | |
codebook_size, | |
kmeans_init = False, | |
kmeans_iters = 10, | |
decay = 0.8, | |
eps = 1e-5, | |
threshold_ema_dead_code = 2, | |
code_replacement_policy = 'batch_random', # batch_random or linde_buzo_gray | |
use_ddp = False, | |
learnable_codebook = False, | |
sample_codebook_temp = 0. | |
): | |
super().__init__() | |
self.decay = decay | |
if not kmeans_init: | |
embed = l2norm(uniform_init(codebook_size, dim)) | |
else: | |
embed = torch.zeros(codebook_size, dim) | |
self.codebook_size = codebook_size | |
self.kmeans_iters = kmeans_iters | |
self.eps = eps | |
self.threshold_ema_dead_code = threshold_ema_dead_code | |
self.code_replacement_policy = code_replacement_policy | |
self.sample_codebook_temp = sample_codebook_temp | |
self.sample_fn = sample_vectors_distributed if use_ddp else sample_vectors | |
self.all_reduce_fn = distributed.all_reduce if use_ddp else noop | |
self.add_noise_fn = add_noise_distributed if use_ddp else add_noise | |
self.register_buffer('initted', torch.Tensor([not kmeans_init])) | |
self.register_buffer('cluster_size', torch.zeros(codebook_size)) | |
self.learnable_codebook = learnable_codebook | |
if learnable_codebook: | |
self.embed = nn.Parameter(embed) | |
else: | |
self.register_buffer('embed', embed) | |
self.counter = 0 | |
def init_embed_(self, data): | |
if self.initted: | |
return | |
embed, cluster_size = kmeans(data, self.codebook_size, self.kmeans_iters, use_cosine_sim = True, | |
sample_fn = self.sample_fn, all_reduce_fn = self.all_reduce_fn) | |
self.embed.data.copy_(embed) | |
self.cluster_size.data.copy_(cluster_size) | |
self.initted.data.copy_(torch.Tensor([True])) | |
def replace_batch_random(self, samples, mask): | |
samples = l2norm(samples) | |
self.embed.data[mask] = self.sample_fn(samples, mask.sum().item()) | |
def replace_linde_buzo_gray(self, mask): | |
num_unused = mask.sum() | |
most_used_idxs = self.cluster_size.argsort(descending=True)[:num_unused] | |
most_used_codes = self.embed.data[most_used_idxs] | |
self.embed.data[mask] = l2norm(self.add_noise_fn(most_used_codes)) | |
def expire_codes_(self, batch_samples): | |
if self.threshold_ema_dead_code == 0: | |
return | |
expired_codes = self.cluster_size < self.threshold_ema_dead_code | |
if not torch.any(expired_codes): | |
return | |
if self.code_replacement_policy == 'batch_random': | |
# Replace dead codes by random latents from encoder | |
batch_samples = rearrange(batch_samples, '... d -> (...) d') | |
self.replace_batch_random(batch_samples, mask = expired_codes) | |
elif self.code_replacement_policy == 'linde_buzo_gray': | |
# Replace dead codes by most used codes + some noise (Linde-Buzo-Gray splitting algorithm) | |
self.replace_linde_buzo_gray(mask = expired_codes) | |
else: | |
raise ValueError(f'{self.code_replacement_policy} is not a valid dead code replacement strategy.') | |
def forward(self, x): | |
x = x.float() | |
shape, dtype = x.shape, x.dtype | |
flatten = rearrange(x, '... d -> (...) d') | |
flatten = l2norm(flatten) | |
self.init_embed_(flatten) | |
embed = self.embed if not self.learnable_codebook else self.embed.detach() | |
embed = l2norm(embed) | |
dist = flatten @ embed.t() | |
embed_ind = gumbel_sample(dist, dim = -1, temperature = self.sample_codebook_temp) | |
embed_onehot = F.one_hot(embed_ind, self.codebook_size).type(dtype) | |
embed_ind = embed_ind.view(*shape[:-1]) | |
quantize = F.embedding(embed_ind, self.embed) | |
if self.training: | |
bins = embed_onehot.sum(0) | |
self.all_reduce_fn(bins) | |
ema_inplace(self.cluster_size, bins, self.decay) | |
zero_mask = (bins == 0) | |
bins = bins.masked_fill(zero_mask, 1.) | |
embed_sum = flatten.t() @ embed_onehot | |
self.all_reduce_fn(embed_sum) | |
embed_normalized = (embed_sum / bins.unsqueeze(0)).t() | |
embed_normalized = l2norm(embed_normalized) | |
embed_normalized = torch.where(zero_mask[..., None], embed, | |
embed_normalized) | |
ema_inplace(self.embed, embed_normalized, self.decay) | |
self.expire_codes_(x) | |
return quantize, embed_ind | |
# main class | |
class VectorQuantize(nn.Module): | |
def __init__( | |
self, | |
dim, | |
codebook_size, | |
codebook_dim = None, | |
heads = 1, | |
decay = 0.8, | |
eps = 1e-5, | |
kmeans_init = False, | |
kmeans_iters = 10, | |
use_cosine_sim = False, | |
threshold_ema_dead_code = 0, | |
code_replacement_policy = 'batch_random', # batch_random or linde_buzo_gray | |
channel_last = False, | |
accept_image_fmap = True, | |
commitment_weight = 1., | |
orthogonal_reg_weight = 0., | |
orthogonal_reg_active_codes_only = False, | |
orthogonal_reg_max_codes = None, | |
sample_codebook_temp = 0., | |
sync_codebook = False, | |
norm_latents = False, | |
): | |
super().__init__() | |
self.heads = heads | |
codebook_dim = default(codebook_dim, dim) | |
codebook_input_dim = codebook_dim * heads | |
requires_projection = codebook_input_dim != dim | |
self.project_in = nn.Linear(dim, codebook_input_dim) if requires_projection else nn.Identity() | |
self.project_out = nn.Linear(codebook_input_dim, dim) if requires_projection else nn.Identity() | |
self.eps = eps | |
self.commitment_weight = commitment_weight | |
self.norm_latents = norm_latents | |
has_codebook_orthogonal_loss = orthogonal_reg_weight > 0 | |
self.orthogonal_reg_weight = orthogonal_reg_weight | |
self.orthogonal_reg_active_codes_only = orthogonal_reg_active_codes_only | |
self.orthogonal_reg_max_codes = orthogonal_reg_max_codes | |
codebook_class = EuclideanCodebook if not use_cosine_sim else CosineSimCodebook | |
self._codebook = codebook_class( | |
dim = codebook_dim, | |
codebook_size = codebook_size, | |
kmeans_init = kmeans_init, | |
kmeans_iters = kmeans_iters, | |
decay = decay, | |
eps = eps, | |
threshold_ema_dead_code = threshold_ema_dead_code, | |
code_replacement_policy = code_replacement_policy, | |
use_ddp = sync_codebook, | |
learnable_codebook = has_codebook_orthogonal_loss, | |
sample_codebook_temp = sample_codebook_temp | |
) | |
self.codebook_size = codebook_size | |
self.accept_image_fmap = accept_image_fmap | |
self.channel_last = channel_last | |
def codebook(self): | |
return self._codebook.embed | |
def indices_to_embedding(self, indices): | |
embedding = F.embedding(indices, self.codebook) | |
embedding = rearrange(embedding, 'b h w c -> b c h w') | |
return embedding | |
def forward(self, x): | |
shape, device, heads, is_multiheaded, codebook_size = x.shape, x.device, self.heads, self.heads > 1, self.codebook_size | |
need_transpose = not self.channel_last and not self.accept_image_fmap | |
if self.accept_image_fmap: | |
height, width = x.shape[-2:] | |
x = rearrange(x, 'b c h w -> b (h w) c') | |
if need_transpose: | |
x = rearrange(x, 'b d n -> b n d') | |
x = self.project_in(x) | |
if is_multiheaded: | |
x = rearrange(x, 'b n (h d) -> (b h) n d', h = heads) | |
if self.norm_latents: | |
# If specified, normalize encoder latents for computing commitment loss | |
x = l2norm(x) | |
quantize, embed_ind = self._codebook(x) | |
if self.training: | |
quantize = x + (quantize - x).detach() | |
loss = torch.tensor([0.], device = device, requires_grad = self.training) | |
if self.training: | |
if self.commitment_weight > 0: | |
commit_loss = F.mse_loss(quantize.detach(), x) | |
loss = loss + commit_loss * self.commitment_weight | |
if self.orthogonal_reg_weight > 0: | |
codebook = self.codebook | |
if self.orthogonal_reg_active_codes_only: | |
# only calculate orthogonal loss for the activated codes for this batch | |
unique_code_ids = torch.unique(embed_ind) | |
codebook = codebook[unique_code_ids] | |
num_codes = codebook.shape[0] | |
if exists(self.orthogonal_reg_max_codes) and num_codes > self.orthogonal_reg_max_codes: | |
rand_ids = torch.randperm(num_codes, device = device)[:self.orthogonal_reg_max_codes] | |
codebook = codebook[rand_ids] | |
orthogonal_reg_loss = orthgonal_loss_fn(codebook) | |
loss = loss + orthogonal_reg_loss * self.orthogonal_reg_weight | |
if is_multiheaded: | |
quantize = rearrange(quantize, '(b h) n d -> b n (h d)', h = heads) | |
embed_ind = rearrange(embed_ind, '(b h) n -> b n h', h = heads) | |
quantize = self.project_out(quantize) | |
if need_transpose: | |
quantize = rearrange(quantize, 'b n d -> b d n') | |
if self.accept_image_fmap: | |
quantize = rearrange(quantize, 'b (h w) c -> b c h w', h = height, w = width) | |
embed_ind = rearrange(embed_ind, 'b (h w) ... -> b h w ...', h = height, w = width) | |
if is_multiheaded: | |
embed_ind = rearrange(embed_ind, 'b h w ... -> b ... h w') | |
return quantize, loss, embed_ind |