aroraaman's picture
Add all of `fourm`
3424266
# Copyright 2024 EPFL and Apple Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from pathlib import Path
import torch
from .dist import save_on_main, is_main_process
from .s3_utils import save_on_s3
from torch.distributed.fsdp import (
FullyShardedDataParallel as FSDP,
FullStateDictConfig,
StateDictType,
)
from torch.distributed.fsdp.api import FullOptimStateDictConfig
def save_model_fsdp(args, epoch, model, optimizer, model_ema=None, ckpt_name=None, use_s3=False):
output_dir = Path(args.output_dir)
epoch_name = str(epoch)
ckpt_name = ckpt_name or epoch_name
with FSDP.state_dict_type(model,
StateDictType.FULL_STATE_DICT,
FullStateDictConfig(offload_to_cpu=True, rank0_only=True),
FullOptimStateDictConfig(offload_to_cpu=True, rank0_only=True),
):
model_state_dict = model.state_dict()
if optimizer is not None:
optimizer_state_dict = FSDP.optim_state_dict(model, optimizer)
else:
optimizer_state_dict = None
# Only create the save_dict on the main process, not needed or recommended to do so on all ranks
# This make save_on_main() redundant
if is_main_process():
checkpoint_path = os.path.join(output_dir, f'checkpoint-{ckpt_name}.pth')
to_save = {
'model': model_state_dict,
'epoch': epoch,
'args': args,
}
if optimizer is not None:
to_save['optimizer'] = optimizer_state_dict
if model_ema is not None:
print("Model EMA is currently not supported for FSDP")
# to_save['model_ema'] = get_state_dict(model_ema)
save_on_main(to_save, checkpoint_path)
if use_s3:
s3_path = os.path.join(args.s3_save_dir, f'checkpoint-{ckpt_name}.pth')
save_on_s3(checkpoint_path, s3_path, args.s3_endpoint)
def auto_load_model_fsdp(args, model, optimizer, model_ema=None):
output_dir = Path(args.output_dir)
if args.auto_resume and len(args.resume) == 0:
import glob
all_checkpoints = glob.glob(os.path.join(output_dir, 'checkpoint-*.pth'))
latest_ckpt = -1
for ckpt in all_checkpoints:
t = ckpt.split('-')[-1].split('.')[0]
if t.isdigit():
latest_ckpt = max(int(t), latest_ckpt)
if latest_ckpt >= 0:
args.resume = os.path.join(output_dir, 'checkpoint-%d.pth' % latest_ckpt)
print("Auto resume checkpoint: %s" % args.resume)
if args.resume:
if args.resume.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.resume, map_location='cpu')
else:
checkpoint = torch.load(args.resume, map_location='cpu')
with FSDP.state_dict_type(
model,
StateDictType.FULL_STATE_DICT,
FullStateDictConfig(rank0_only=False),
FullOptimStateDictConfig(rank0_only=False),
):
model.load_state_dict(checkpoint['model'])
print("Resume checkpoint %s" % args.resume)
if 'optimizer' in checkpoint and 'epoch' in checkpoint:
optimizer_state_dict = FSDP.optim_state_dict_to_load(checkpoint['optimizer'], model, optimizer)
optimizer.load_state_dict(optimizer_state_dict)
args.start_epoch = checkpoint['epoch'] + 1
print("With optim & sched!")
if hasattr(args, 'model_ema') and args.model_ema:
print("Model EMA is currently not supported for FSDP")