aroraaman's picture
Add all of `fourm`
3424266
# Copyright 2024 EPFL and Apple Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# --------------------------------------------------------
# Based on the timm code base
# https://github.com/huggingface/pytorch-image-models
# --------------------------------------------------------
import io
import os
import ast
import json
from pathlib import Path
from safetensors.torch import load as load_st
import torch
from .dist import save_on_main, is_main_process
from .timm.model import get_state_dict
from .s3_utils import save_on_s3
def _load_checkpoint_for_ema(model_ema, checkpoint):
"""
Workaround for ModelEma._load_checkpoint to accept an already-loaded object
"""
mem_file = io.BytesIO()
torch.save(checkpoint, mem_file)
mem_file.seek(0)
model_ema._load_checkpoint(mem_file)
def load_state_dict(model, state_dict, prefix='', ignore_missing=''):
missing_keys = []
unexpected_keys = []
error_msgs = []
# copy state_dict so _load_from_state_dict can modify it
metadata = getattr(state_dict, '_metadata', None)
state_dict = state_dict.copy()
if metadata is not None:
state_dict._metadata = metadata
def load(module, prefix=''):
local_metadata = {} if metadata is None else metadata.get(
prefix[:-1], {})
module._load_from_state_dict(
state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
for name, child in module._modules.items():
if child is not None:
load(child, prefix + name + '.')
load(model, prefix=prefix)
warn_missing_keys = []
ignore_missing_keys = []
for key in missing_keys:
keep_flag = True
for ignore_key in ignore_missing.split('|'):
if ignore_key in key:
keep_flag = False
break
if keep_flag:
warn_missing_keys.append(key)
else:
ignore_missing_keys.append(key)
missing_keys = warn_missing_keys
if len(missing_keys) > 0:
print("Weights of {} not initialized from pretrained model: {}".format(
model.__class__.__name__, missing_keys))
if len(unexpected_keys) > 0:
print("Weights from pretrained model not used in {}: {}".format(
model.__class__.__name__, unexpected_keys))
if len(ignore_missing_keys) > 0:
print("Ignored weights of {} not initialized from pretrained model: {}".format(
model.__class__.__name__, ignore_missing_keys))
if len(error_msgs) > 0:
print('\n'.join(error_msgs))
def save_model(args, epoch, model, model_without_ddp, optimizer, loss_scaler, loss_balancer=None, model_ema=None, ckpt_name=None, use_s3=False, all_nodes=False):
output_dir = Path(args.output_dir)
epoch_name = str(epoch)
ckpt_name = ckpt_name or epoch_name
# Only create the save_dict on the main process, unless all_nodes is set to True
if is_main_process() or (all_nodes and args.gpu == 0):
checkpoint_path = os.path.join(output_dir, f'checkpoint-{ckpt_name}.pth')
to_save = {
'model': model_without_ddp.state_dict(),
'epoch': epoch,
'args': args,
'scaler': loss_scaler.state_dict(),
}
if optimizer is not None:
to_save['optimizer'] = optimizer.state_dict()
if loss_balancer is not None:
to_save['loss_balancer'] = loss_balancer.state_dict()
if model_ema is not None:
to_save['model_ema'] = get_state_dict(model_ema)
save_on_main(to_save, checkpoint_path)
if use_s3:
s3_path = os.path.join(args.s3_save_dir, f'checkpoint-{ckpt_name}.pth')
save_on_s3(checkpoint_path, s3_path, args.s3_endpoint)
def auto_load_model(args, model, model_without_ddp, optimizer, loss_scaler, model_ema=None):
output_dir = Path(args.output_dir)
# torch.amp
if args.auto_resume and len(args.resume) == 0:
import glob
all_checkpoints = glob.glob(os.path.join(output_dir, 'checkpoint-*.pth'))
latest_ckpt = -1
for ckpt in all_checkpoints:
t = ckpt.split('-')[-1].split('.')[0]
if t.isdigit():
latest_ckpt = max(int(t), latest_ckpt)
if latest_ckpt >= 0:
args.resume = os.path.join(output_dir, 'checkpoint-%d.pth' % latest_ckpt)
print("Auto resume checkpoint: %s" % args.resume)
if args.resume:
if args.resume.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.resume, map_location='cpu')
else:
checkpoint = torch.load(args.resume, map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'])
print("Resume checkpoint %s" % args.resume)
if 'optimizer' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
args.start_epoch = checkpoint['epoch'] + 1
if 'scaler' in checkpoint:
loss_scaler.load_state_dict(checkpoint['scaler'])
print("With optim & sched!")
if hasattr(args, 'model_ema') and args.model_ema:
_load_checkpoint_for_ema(model_ema, {'state_dict_ema': checkpoint['model_ema']})
print("With EMA!")
def parse_metadata(metadata_str):
metadata = {}
for k, v in metadata_str.items():
try:
v_parsed = ast.literal_eval(v)
except:
v_parsed = v
metadata[k] = v_parsed
return metadata
def load_safetensors(safetensors_path, return_metadata=True):
with open(safetensors_path, 'rb') as f:
data = f.read()
tensors = load_st(data)
if not return_metadata:
return tensors
n_header = data[:8]
n = int.from_bytes(n_header, "little")
metadata_bytes = data[8 : 8 + n]
header = json.loads(metadata_bytes)
metadata = header.get("__metadata__", {})
metadata = parse_metadata(metadata)
return tensors, metadata