Spaces:
Sleeping
Sleeping
import streamlit as st | |
import os | |
from langchain_groq import ChatGroq | |
from langchain_huggingface import HuggingFaceEmbeddings | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.chains.combine_documents import create_stuff_documents_chain | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain.chains import create_retrieval_chain | |
from langchain_community.vectorstores import FAISS | |
from langchain_community.document_loaders import PyPDFLoader | |
from dotenv import load_dotenv | |
import tempfile | |
load_dotenv() | |
groq_api_key = os.getenv('GROQ_API_KEY') | |
st.markdown("<h2 style='text-align: center;'>PDF Insights: Interactive Q&A Chatbot with Groq API</h2>", unsafe_allow_html=True) | |
llm = ChatGroq(groq_api_key=groq_api_key, model_name="Llama3-8b-8192") | |
prompt = ChatPromptTemplate.from_template( | |
""" | |
Answer the questions based on the provided context only. | |
Please provide the most accurate response based on the question. | |
If the answer is not in the document, just say "Please Contact the Business Directly". Dont say wrong answer. | |
<context> | |
{context} | |
<context> | |
Questions: {input} | |
""" | |
) | |
def create_vector_db_out_of_the_uploaded_pdf_file(pdf_file): | |
if "vector_store" not in st.session_state: | |
with tempfile.NamedTemporaryFile(delete=False) as temp_file: | |
temp_file.write(pdf_file.read()) | |
pdf_file_path = temp_file.name | |
st.session_state.embeddings = HuggingFaceEmbeddings(model_name='BAAI/bge-small-en-v1.5', model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': True}) | |
st.session_state.loader = PyPDFLoader(pdf_file_path) | |
st.session_state.text_document_from_pdf = st.session_state.loader.load() | |
st.session_state.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) | |
st.session_state.final_document_chunks = st.session_state.text_splitter.split_documents(st.session_state.text_document_from_pdf) | |
st.session_state.vector_store = FAISS.from_documents(st.session_state.final_document_chunks, st.session_state.embeddings) | |
pdf_input_from_user = st.file_uploader("Upload the PDF file", type=['pdf']) | |
if pdf_input_from_user is not None: | |
if st.button("Create the Vector DB from the uploaded PDF file"): | |
if pdf_input_from_user is not None: | |
create_vector_db_out_of_the_uploaded_pdf_file(pdf_input_from_user) | |
st.success("Vector Store DB for this PDF file Is Ready") | |
else: | |
st.write("Please upload a PDF file first") | |
if "vector_store" in st.session_state: | |
user_prompt = st.text_input("Enter Your Question related to the uploaded PDF") | |
if st.button('Submit Prompt'): | |
if user_prompt: | |
if "vector_store" in st.session_state: | |
document_chain = create_stuff_documents_chain(llm, prompt) | |
retriever = st.session_state.vector_store.as_retriever() | |
retrieval_chain = create_retrieval_chain(retriever, document_chain) | |
response = retrieval_chain.invoke({'input': user_prompt}) | |
st.write(response['answer']) | |
else: | |
st.write("Please embed the document first by uploading a PDF file.") | |
else: | |
st.error('Please write your prompt') | |