Spaces:
Runtime error
Runtime error
import gradio as gr | |
# import torch | |
# from torch import autocast | |
# from diffusers import StableDiffusionPipeline | |
# from datasets import load_dataset | |
from PIL import Image | |
import re | |
import os | |
# auth_token = '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' #os.getenv("auth_token") | |
# model_id = "CompVis/stable-diffusion-v1-4" | |
# device = "cpu" | |
# pipe = StableDiffusionPipeline.from_pretrained(model_id, use_auth_token=auth_token, revision="fp16", torch_dtype=torch.float16) | |
# pipe = pipe.to(device) | |
stable_diffusion = gr.Blocks.load(name="spaces/stabilityai/stable-diffusion") | |
def get_images(prompt): | |
gallery_dir = stable_diffusion(prompt, fn_index=2) | |
return [os.path.join(gallery_dir, img) for img in os.listdir(gallery_dir)] | |
def infer(prompt, samples, steps, scale, seed): | |
generator = torch.Generator(device=device).manual_seed(seed) | |
images_list = pipe( | |
[prompt] * samples, | |
num_inference_steps=steps, | |
guidance_scale=scale, | |
generator=generator, | |
) | |
images = [] | |
# safe_image = Image.open(r"unsafe.png") | |
for i, image in enumerate(images_list["sample"]): | |
images.append(image) | |
# if(images_list["nsfw_content_detected"][i]): | |
# images.append(safe_image) | |
# else: | |
# images.append(image) | |
return images | |
block = gr.Blocks() | |
with block: | |
with gr.Group(): | |
with gr.Box(): | |
with gr.Row().style(mobile_collapse=False, equal_height=True): | |
text = gr.Textbox( | |
label="Enter your prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
).style( | |
border=(True, False, True, True), | |
rounded=(True, False, False, True), | |
container=False, | |
) | |
btn = gr.Button("Generate image").style( | |
margin=False, | |
rounded=(False, True, True, False), | |
) | |
gallery = gr.Gallery( | |
label="Generated images", show_label=False, elem_id="gallery" | |
).style(grid=[2], height="auto") | |
advanced_button = gr.Button("Advanced options", elem_id="advanced-btn") | |
with gr.Row(elem_id="advanced-options"): | |
samples = gr.Slider(label="Images", minimum=1, maximum=4, value=4, step=1) | |
steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=45, step=1) | |
scale = gr.Slider( | |
label="Guidance Scale", minimum=0, maximum=50, value=7.5, step=0.1 | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=2147483647, | |
step=1, | |
randomize=True, | |
) | |
text.submit(infer, inputs=[text, samples, steps, scale, seed], outputs=gallery) | |
btn.click(infer, inputs=[text, samples, steps, scale, seed], outputs=gallery) | |
advanced_button.click( | |
None, | |
[], | |
text, | |
) | |
block.launch() |