Update app.py
Browse files
app.py
CHANGED
|
@@ -2,6 +2,7 @@ import gradio as gr
|
|
| 2 |
from transformers import pipeline
|
| 3 |
from diffusers import StableDiffusionPipeline
|
| 4 |
import torch
|
|
|
|
| 5 |
|
| 6 |
# --- Load NLP pipelines ---
|
| 7 |
clf = pipeline("text-classification", model="distilbert-base-uncased-finetuned-sst-2-english")
|
|
@@ -15,16 +16,33 @@ det = pipeline("object-detection", model="facebook/detr-resnet-50")
|
|
| 15 |
seg = pipeline("image-segmentation", model="facebook/mask2former-swin-base-coco-instance")
|
| 16 |
|
| 17 |
# --- Diffusion model for text-to-image ---
|
| 18 |
-
sd_pipe = StableDiffusionPipeline.from_pretrained(
|
|
|
|
|
|
|
| 19 |
sd_pipe = sd_pipe.to("cuda" if torch.cuda.is_available() else "cpu")
|
| 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
# --- Functions ---
|
| 23 |
def classify_text(text):
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
def ner_text(text):
|
| 27 |
-
|
|
|
|
| 28 |
|
| 29 |
def fill_blank(text):
|
| 30 |
return mlm(text)
|
|
@@ -45,52 +63,83 @@ def generate_image(prompt):
|
|
| 45 |
image = sd_pipe(prompt).images[0]
|
| 46 |
return image
|
| 47 |
|
| 48 |
-
|
| 49 |
-
|
| 50 |
# --- Gradio Interface ---
|
| 51 |
-
with gr.Blocks() as demo:
|
| 52 |
-
gr.Markdown("
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
txt_out = gr.JSON(label="Classification Result")
|
|
|
|
| 57 |
txt_in.submit(classify_text, txt_in, txt_out)
|
|
|
|
| 58 |
|
| 59 |
-
with gr.Tab("
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
ner_in = gr.Textbox(label="Enter text")
|
| 61 |
ner_out = gr.JSON(label="Entities")
|
| 62 |
ner_in.submit(ner_text, ner_in, ner_out)
|
| 63 |
|
| 64 |
-
with gr.Tab("Fill-in-the-Blank"):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
mlm_in = gr.Textbox(label="Enter sentence with [MASK]")
|
| 66 |
mlm_out = gr.JSON(label="Predictions")
|
| 67 |
mlm_in.submit(fill_blank, mlm_in, mlm_out)
|
| 68 |
|
| 69 |
-
with gr.Tab("Question Answering"):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
context = gr.Textbox(label="Context")
|
| 71 |
question = gr.Textbox(label="Question")
|
| 72 |
qa_out = gr.JSON(label="Answer")
|
| 73 |
gr.Button("Answer").click(answer_question, [context, question], qa_out)
|
| 74 |
|
| 75 |
-
with gr.Tab("Image Classification"):
|
|
|
|
| 76 |
img_in = gr.Image(type="pil")
|
| 77 |
img_out = gr.JSON(label="Labels")
|
| 78 |
img_in.upload(classify_image, img_in, img_out)
|
| 79 |
|
| 80 |
-
with gr.Tab("Object Detection"):
|
|
|
|
| 81 |
det_in = gr.Image(type="pil")
|
| 82 |
det_out = gr.JSON(label="Objects")
|
| 83 |
det_in.upload(detect_objects, det_in, det_out)
|
| 84 |
|
| 85 |
-
with gr.Tab("Segmentation"):
|
|
|
|
| 86 |
seg_in = gr.Image(type="pil")
|
| 87 |
seg_out = gr.JSON(label="Segments")
|
| 88 |
seg_in.upload(segment_image, seg_in, seg_out)
|
| 89 |
|
| 90 |
-
with gr.Tab("Image Generation"):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
gen_in = gr.Textbox(label="Prompt")
|
| 92 |
gen_out = gr.Image(label="Generated Image")
|
| 93 |
gr.Button("Generate").click(generate_image, gen_in, gen_out)
|
| 94 |
|
| 95 |
-
|
| 96 |
demo.launch()
|
|
|
|
| 2 |
from transformers import pipeline
|
| 3 |
from diffusers import StableDiffusionPipeline
|
| 4 |
import torch
|
| 5 |
+
from PIL import Image
|
| 6 |
|
| 7 |
# --- Load NLP pipelines ---
|
| 8 |
clf = pipeline("text-classification", model="distilbert-base-uncased-finetuned-sst-2-english")
|
|
|
|
| 16 |
seg = pipeline("image-segmentation", model="facebook/mask2former-swin-base-coco-instance")
|
| 17 |
|
| 18 |
# --- Diffusion model for text-to-image ---
|
| 19 |
+
sd_pipe = StableDiffusionPipeline.from_pretrained(
|
| 20 |
+
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16
|
| 21 |
+
)
|
| 22 |
sd_pipe = sd_pipe.to("cuda" if torch.cuda.is_available() else "cpu")
|
| 23 |
|
| 24 |
+
# --- Sample sentences ---
|
| 25 |
+
SAMPLE_SENTENCES = [
|
| 26 |
+
"The Amazon rainforest is losing trees at an alarming rate due to deforestation.",
|
| 27 |
+
"Ocean pollution is harming marine life around the world.",
|
| 28 |
+
"Renewable energy like solar and wind can reduce global warming.",
|
| 29 |
+
"Wildlife conservation is essential to protect endangered species.",
|
| 30 |
+
"Sustainable farming practices improve soil health and reduce pollution."
|
| 31 |
+
]
|
| 32 |
|
| 33 |
# --- Functions ---
|
| 34 |
def classify_text(text):
|
| 35 |
+
result = clf(text)[0]
|
| 36 |
+
label = result['label']
|
| 37 |
+
score = result['score']
|
| 38 |
+
# Map to Positive/Negative/Neutral
|
| 39 |
+
sentiment_map = {"POSITIVE": "Positive π", "NEGATIVE": "Negative π"}
|
| 40 |
+
sentiment = sentiment_map.get(label, "Neutral π")
|
| 41 |
+
return {"Sentiment": sentiment, "Confidence": round(score, 3)}
|
| 42 |
|
| 43 |
def ner_text(text):
|
| 44 |
+
entities = ner(text)
|
| 45 |
+
return entities
|
| 46 |
|
| 47 |
def fill_blank(text):
|
| 48 |
return mlm(text)
|
|
|
|
| 63 |
image = sd_pipe(prompt).images[0]
|
| 64 |
return image
|
| 65 |
|
|
|
|
|
|
|
| 66 |
# --- Gradio Interface ---
|
| 67 |
+
with gr.Blocks(title="π Environmental AI Toolkit") as demo:
|
| 68 |
+
gr.Markdown("""
|
| 69 |
+
# π± Environmental AI Toolkit
|
| 70 |
+
This toolkit provides multiple AI-powered tools for environmental text and image analysis:
|
| 71 |
+
- **Sentence Classification**: Analyze environmental text sentiment (Positive/Negative)
|
| 72 |
+
- **NER**: Identify environmental entities in text
|
| 73 |
+
- **Fill-in-the-Blank**: Complete environmental sentences using AI
|
| 74 |
+
- **Question Answering**: Ask questions based on provided context
|
| 75 |
+
- **Image Classification, Detection & Segmentation**
|
| 76 |
+
- **Image Generation**: Generate environmental scenes from prompts
|
| 77 |
+
""")
|
| 78 |
+
|
| 79 |
+
with gr.Tab("π· Sentence Classification"):
|
| 80 |
+
gr.Markdown("""
|
| 81 |
+
### Classify environmental sentences into sentiment
|
| 82 |
+
Enter any environmental sentence, and the tool will tell you if the sentiment is Positive π, Negative π, or Neutral π.
|
| 83 |
+
""")
|
| 84 |
+
txt_in = gr.Textbox(label="Enter text", placeholder="E.g., 'The Amazon rainforest is being deforested'")
|
| 85 |
txt_out = gr.JSON(label="Classification Result")
|
| 86 |
+
sample_btn = gr.Button("Load Sample Sentence")
|
| 87 |
txt_in.submit(classify_text, txt_in, txt_out)
|
| 88 |
+
sample_btn.click(lambda: SAMPLE_SENTENCES[0], None, txt_in)
|
| 89 |
|
| 90 |
+
with gr.Tab("π Named Entity Recognition"):
|
| 91 |
+
gr.Markdown("""
|
| 92 |
+
### Extract named entities
|
| 93 |
+
Enter environmental text, and the model will extract entities like **locations, organizations, species**, etc.
|
| 94 |
+
""")
|
| 95 |
ner_in = gr.Textbox(label="Enter text")
|
| 96 |
ner_out = gr.JSON(label="Entities")
|
| 97 |
ner_in.submit(ner_text, ner_in, ner_out)
|
| 98 |
|
| 99 |
+
with gr.Tab("π Fill-in-the-Blank"):
|
| 100 |
+
gr.Markdown("""
|
| 101 |
+
### Complete sentences
|
| 102 |
+
Enter a sentence with `[MASK]` token, and AI will predict possible words to fill.
|
| 103 |
+
""")
|
| 104 |
mlm_in = gr.Textbox(label="Enter sentence with [MASK]")
|
| 105 |
mlm_out = gr.JSON(label="Predictions")
|
| 106 |
mlm_in.submit(fill_blank, mlm_in, mlm_out)
|
| 107 |
|
| 108 |
+
with gr.Tab("β Question Answering"):
|
| 109 |
+
gr.Markdown("""
|
| 110 |
+
### Ask questions based on context
|
| 111 |
+
Provide context and ask a question. AI will try to answer from the given text.
|
| 112 |
+
""")
|
| 113 |
context = gr.Textbox(label="Context")
|
| 114 |
question = gr.Textbox(label="Question")
|
| 115 |
qa_out = gr.JSON(label="Answer")
|
| 116 |
gr.Button("Answer").click(answer_question, [context, question], qa_out)
|
| 117 |
|
| 118 |
+
with gr.Tab("πΌ Image Classification"):
|
| 119 |
+
gr.Markdown("### Upload an environmental image to classify it")
|
| 120 |
img_in = gr.Image(type="pil")
|
| 121 |
img_out = gr.JSON(label="Labels")
|
| 122 |
img_in.upload(classify_image, img_in, img_out)
|
| 123 |
|
| 124 |
+
with gr.Tab("π΅οΈ Object Detection"):
|
| 125 |
+
gr.Markdown("### Detect objects in environmental images")
|
| 126 |
det_in = gr.Image(type="pil")
|
| 127 |
det_out = gr.JSON(label="Objects")
|
| 128 |
det_in.upload(detect_objects, det_in, det_out)
|
| 129 |
|
| 130 |
+
with gr.Tab("π§© Segmentation"):
|
| 131 |
+
gr.Markdown("### Segment environmental images into regions")
|
| 132 |
seg_in = gr.Image(type="pil")
|
| 133 |
seg_out = gr.JSON(label="Segments")
|
| 134 |
seg_in.upload(segment_image, seg_in, seg_out)
|
| 135 |
|
| 136 |
+
with gr.Tab("π¨ Image Generation"):
|
| 137 |
+
gr.Markdown("""
|
| 138 |
+
### Generate environmental scenes from a text prompt
|
| 139 |
+
Describe a scene, e.g., "A lush green forest with tall trees and wildlife".
|
| 140 |
+
""")
|
| 141 |
gen_in = gr.Textbox(label="Prompt")
|
| 142 |
gen_out = gr.Image(label="Generated Image")
|
| 143 |
gr.Button("Generate").click(generate_image, gen_in, gen_out)
|
| 144 |
|
|
|
|
| 145 |
demo.launch()
|