video_ad_classifier / image_caption2.py
arjunanand13's picture
Rename image_caption.py to image_caption2.py
f6de084 verified
import argparse
from pathlib import Path
import os
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer
import torch
from PIL import Image
import io
class Caption:
def __init__(self):
self.model = VisionEncoderDecoderModel.from_pretrained(
"nlpconnect/vit-gpt2-image-captioning"
)
self.feature_extractor = ViTImageProcessor.from_pretrained(
"nlpconnect/vit-gpt2-image-captioning"
)
self.tokenizer = AutoTokenizer.from_pretrained(
"nlpconnect/vit-gpt2-image-captioning"
)
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model.to(self.device)
self.max_length = 16
self.num_beams = 4
self.gen_kwargs = {"max_length": self.max_length, "num_beams": self.num_beams}
def predict_step(self,image_paths):
images = []
for image_path in image_paths:
i_image = Image.open(image_path)
if i_image.mode != "RGB":
i_image = i_image.convert(mode="RGB")
images.append(i_image)
pixel_values = self.feature_extractor(images=images, return_tensors="pt").pixel_values
pixel_values = pixel_values.to(self.device)
output_ids = self.model.generate(pixel_values, **self.gen_kwargs)
preds = self.tokenizer.batch_decode(output_ids, skip_special_tokens=True)
preds = [pred.strip() for pred in preds]
return preds
def predict_from_memory(self, image_buffers):
images = []
for image_buffer in image_buffers:
# Ensure the buffer is positioned at the start
if isinstance(image_buffer, io.BytesIO):
image_buffer.seek(0)
try:
i_image = Image.open(image_buffer)
if i_image.mode != "RGB":
i_image = i_image.convert("RGB")
images.append(i_image)
except Exception as e:
print(f"Failed to process image buffer: {str(e)}")
continue
return self.process_images(images)
def process_images(self, images):
pixel_values = self.feature_extractor(images=images, return_tensors="pt").pixel_values
pixel_values = pixel_values.to(self.device)
output_ids = self.model.generate(pixel_values, **self.gen_kwargs)
preds = self.tokenizer.batch_decode(output_ids, skip_special_tokens=True)
preds = [pred.strip() for pred in preds]
return preds
def get_args(self):
parser = argparse.ArgumentParser()
parser.add_argument( "-i",
"--input_img_paths",
type=str,
default="farmer.jpg",
help="img for caption")
args = parser.parse_args()
return args
if __name__ == "__main__":
model = Caption()
args = model.get_args()
image_paths = []
image_paths.append(args.input_img_paths)
print(model.predict_step(image_paths))