Spaces:
Running
Running
import gradio as gr | |
import os | |
from typing import List, Dict | |
import numpy as np | |
from datasets import load_dataset | |
from langchain.text_splitter import ( | |
RecursiveCharacterTextSplitter, | |
CharacterTextSplitter, | |
TokenTextSplitter | |
) | |
from langchain_community.vectorstores import FAISS, Chroma, Qdrant | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain_community.llms import HuggingFaceEndpoint | |
from langchain.memory import ConversationBufferMemory | |
from sentence_transformers import SentenceTransformer, util | |
import torch | |
from ragas import evaluate | |
from ragas.metrics import ( | |
ContextRecall, | |
AnswerRelevancy, | |
Faithfulness, | |
ContextPrecision | |
) | |
import pandas as pd | |
# Constants and setup | |
list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"] | |
list_llm_simple = [os.path.basename(llm) for llm in list_llm] | |
api_token = os.getenv("HF_TOKEN") | |
CHUNK_SIZES = { | |
"small": {"recursive": 512, "fixed": 512, "token": 256}, | |
"medium": {"recursive": 1024, "fixed": 1024, "token": 512} | |
} | |
# Initialize sentence transformer for evaluation | |
sentence_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') | |
class RAGEvaluator: | |
def __init__(self): | |
self.datasets = { | |
"squad": "squad_v2", | |
"msmarco": "ms_marco" | |
} | |
self.current_dataset = None | |
self.test_samples = [] | |
def load_dataset(self, dataset_name: str, num_samples: int = 5): | |
"""Load a smaller subset of questions""" | |
if dataset_name == "squad": | |
dataset = load_dataset("squad_v2", split="validation") | |
# Select diverse questions based on length and type | |
samples = dataset.select(range(0, 1000, 100))[:num_samples] # Take 10 spaced-out samples | |
self.test_samples = [ | |
{ | |
"question": sample["question"], | |
"ground_truth": sample["answers"]["text"][0] if sample["answers"]["text"] else "", | |
"context": sample["context"] | |
} | |
for sample in samples | |
if sample["answers"]["text"] | |
] | |
elif dataset_name == "msmarco": | |
dataset = load_dataset("ms_marco", "v2.1", split="train") | |
samples = dataset.select(range(0, 1000, 100))[:num_samples] | |
self.test_samples = [ | |
{ | |
"question": sample["query"], | |
"ground_truth": sample["answers"][0] if sample["answers"] else "", | |
"context": sample["passages"]["passage_text"][0] | |
} | |
for sample in samples | |
if sample["answers"] | |
] | |
self.current_dataset = dataset_name | |
return self.test_samples | |
def evaluate_configuration(self, vector_db, qa_chain, splitting_strategy: str, chunk_size: str) -> Dict: | |
"""Evaluate with progress tracking""" | |
if not self.test_samples: | |
return {"error": "No dataset loaded"} | |
results = [] | |
total_questions = len(self.test_samples) | |
# Add progress tracking | |
for i, sample in enumerate(self.test_samples): | |
print(f"Evaluating question {i+1}/{total_questions}") | |
try: | |
response = qa_chain.invoke({ | |
"question": sample["question"], | |
"chat_history": [] | |
}) | |
results.append({ | |
"question": sample["question"], | |
"answer": response["answer"], | |
"contexts": [doc.page_content for doc in response["source_documents"]], | |
"ground_truths": [sample["ground_truth"]] | |
}) | |
except Exception as e: | |
print(f"Error processing question {i+1}: {str(e)}") | |
continue | |
# Calculate RAGAS metrics | |
eval_dataset = Dataset.from_list(results) | |
metrics = [ContextRecall(), AnswerRelevancy(), Faithfulness(), ContextPrecision()] | |
try: | |
scores = evaluate(eval_dataset, metrics=metrics) | |
return { | |
"configuration": f"{splitting_strategy}_{chunk_size}", | |
"questions_evaluated": len(results), | |
"context_recall": float(scores['context_recall']), | |
"answer_relevancy": float(scores['answer_relevancy']), | |
"faithfulness": float(scores['faithfulness']), | |
"context_precision": float(scores['context_precision']), | |
"average_score": float(np.mean([ | |
scores['context_recall'], | |
scores['answer_relevancy'], | |
scores['faithfulness'], | |
scores['context_precision'] | |
])) | |
} | |
except Exception as e: | |
return { | |
"configuration": f"{splitting_strategy}_{chunk_size}", | |
"error": str(e), | |
"questions_evaluated": len(results) | |
} | |
# Text splitting and database functions | |
def get_text_splitter(strategy: str, chunk_size: int = 1024, chunk_overlap: int = 64): | |
splitters = { | |
"recursive": RecursiveCharacterTextSplitter( | |
chunk_size=chunk_size, | |
chunk_overlap=chunk_overlap | |
), | |
"fixed": CharacterTextSplitter( | |
chunk_size=chunk_size, | |
chunk_overlap=chunk_overlap | |
), | |
"token": TokenTextSplitter( | |
chunk_size=chunk_size, | |
chunk_overlap=chunk_overlap | |
) | |
} | |
return splitters.get(strategy) | |
def load_doc(list_file_path: List[str], splitting_strategy: str, chunk_size: str): | |
chunk_size_value = CHUNK_SIZES[chunk_size][splitting_strategy] | |
loaders = [PyPDFLoader(x) for x in list_file_path] | |
pages = [] | |
for loader in loaders: | |
pages.extend(loader.load()) | |
text_splitter = get_text_splitter(splitting_strategy, chunk_size_value) | |
doc_splits = text_splitter.split_documents(pages) | |
return doc_splits | |
def create_db(splits, db_choice: str = "faiss"): | |
embeddings = HuggingFaceEmbeddings() | |
db_creators = { | |
"faiss": lambda: FAISS.from_documents(splits, embeddings), | |
"chroma": lambda: Chroma.from_documents(splits, embeddings), | |
"qdrant": lambda: Qdrant.from_documents( | |
splits, | |
embeddings, | |
location=":memory:", | |
collection_name="pdf_docs" | |
) | |
} | |
return db_creators[db_choice]() | |
def initialize_database(list_file_obj, splitting_strategy, chunk_size, db_choice, progress=gr.Progress()): | |
list_file_path = [x.name for x in list_file_obj if x is not None] | |
doc_splits = load_doc(list_file_path, splitting_strategy, chunk_size) | |
vector_db = create_db(doc_splits, db_choice) | |
return vector_db, f"Database created using {splitting_strategy} splitting and {db_choice} vector database!" | |
def initialize_llmchain(llm_choice, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): | |
llm_model = list_llm[llm_choice] | |
llm = HuggingFaceEndpoint( | |
repo_id=llm_model, | |
huggingfacehub_api_token=api_token, | |
temperature=temperature, | |
max_new_tokens=max_tokens, | |
top_k=top_k | |
) | |
memory = ConversationBufferMemory( | |
memory_key="chat_history", | |
output_key='answer', | |
return_messages=True | |
) | |
retriever = vector_db.as_retriever() | |
qa_chain = ConversationalRetrievalChain.from_llm( | |
llm, | |
retriever=retriever, | |
memory=memory, | |
return_source_documents=True | |
) | |
return qa_chain, "LLM initialized successfully!" | |
def conversation(qa_chain, message, history): | |
"""Fixed conversation function returning all required outputs""" | |
response = qa_chain.invoke({ | |
"question": message, | |
"chat_history": [(hist[0], hist[1]) for hist in history] | |
}) | |
response_answer = response["answer"] | |
if "Helpful Answer:" in response_answer: | |
response_answer = response_answer.split("Helpful Answer:")[-1] | |
# Get source documents, ensure we have exactly 3 | |
sources = response["source_documents"][:3] | |
source_contents = [] | |
source_pages = [] | |
# Process available sources | |
for source in sources: | |
source_contents.append(source.page_content.strip()) | |
source_pages.append(source.metadata.get("page", 0) + 1) | |
# Pad with empty values if we have fewer than 3 sources | |
while len(source_contents) < 3: | |
source_contents.append("") | |
source_pages.append(0) | |
# Return all required outputs in correct order | |
return ( | |
qa_chain, # State | |
gr.update(value=""), # Clear message box | |
history + [(message, response_answer)], # Updated chat history | |
source_contents[0], # First source | |
source_pages[0], # First page | |
source_contents[1], # Second source | |
source_pages[1], # Second page | |
source_contents[2], # Third source | |
source_pages[2] # Third page | |
) | |
def demo(): | |
evaluator = RAGEvaluator() | |
with gr.Blocks(theme=gr.themes.Default(primary_hue="red", secondary_hue="pink", neutral_hue="sky")) as demo: | |
vector_db = gr.State() | |
qa_chain = gr.State() | |
gr.HTML("<center><h1>Enhanced RAG PDF Chatbot with Evaluation</h1></center>") | |
with gr.Tabs(): | |
# Custom PDF Tab | |
with gr.Tab("Custom PDF Chat"): | |
with gr.Row(): | |
with gr.Column(scale=86): | |
gr.Markdown("<b>Step 1 - Configure and Initialize RAG Pipeline</b>") | |
with gr.Row(): | |
document = gr.Files( | |
height=300, | |
file_count="multiple", | |
file_types=["pdf"], | |
interactive=True, | |
label="Upload PDF documents" | |
) | |
with gr.Row(): | |
splitting_strategy = gr.Radio( | |
["recursive", "fixed", "token"], | |
label="Text Splitting Strategy", | |
value="recursive" | |
) | |
db_choice = gr.Radio( | |
["faiss", "chroma", "qdrant"], | |
label="Vector Database", | |
value="faiss" | |
) | |
chunk_size = gr.Radio( | |
["small", "medium"], | |
label="Chunk Size", | |
value="medium" | |
) | |
with gr.Row(): | |
db_btn = gr.Button("Create vector database") | |
db_progress = gr.Textbox( | |
value="Not initialized", | |
show_label=False | |
) | |
gr.Markdown("<b>Step 2 - Configure LLM</b>") | |
with gr.Row(): | |
llm_choice = gr.Radio( | |
list_llm_simple, | |
label="Available LLMs", | |
value=list_llm_simple[0], | |
type="index" | |
) | |
with gr.Row(): | |
with gr.Accordion("LLM Parameters", open=False): | |
temperature = gr.Slider( | |
minimum=0.01, | |
maximum=1.0, | |
value=0.5, | |
step=0.1, | |
label="Temperature" | |
) | |
max_tokens = gr.Slider( | |
minimum=128, | |
maximum=4096, | |
value=2048, | |
step=128, | |
label="Max Tokens" | |
) | |
top_k = gr.Slider( | |
minimum=1, | |
maximum=10, | |
value=3, | |
step=1, | |
label="Top K" | |
) | |
with gr.Row(): | |
init_llm_btn = gr.Button("Initialize LLM") | |
llm_progress = gr.Textbox( | |
value="Not initialized", | |
show_label=False | |
) | |
with gr.Column(scale=200): | |
gr.Markdown("<b>Step 3 - Chat with Documents</b>") | |
chatbot = gr.Chatbot(height=505) | |
with gr.Accordion("Source References", open=False): | |
with gr.Row(): | |
source1 = gr.Textbox(label="Source 1", lines=2) | |
page1 = gr.Number(label="Page") | |
with gr.Row(): | |
source2 = gr.Textbox(label="Source 2", lines=2) | |
page2 = gr.Number(label="Page") | |
with gr.Row(): | |
source3 = gr.Textbox(label="Source 3", lines=2) | |
page3 = gr.Number(label="Page") | |
with gr.Row(): | |
msg = gr.Textbox( | |
placeholder="Ask a question", | |
show_label=False | |
) | |
with gr.Row(): | |
submit_btn = gr.Button("Submit") | |
clear_btn = gr.ClearButton( | |
[msg, chatbot], | |
value="Clear Chat" | |
) | |
# Evaluation Tab | |
with gr.Tab("RAG Evaluation"): | |
with gr.Row(): | |
dataset_choice = gr.Dropdown( | |
choices=list(evaluator.datasets.keys()), | |
label="Select Evaluation Dataset", | |
value="squad" | |
) | |
load_dataset_btn = gr.Button("Load Dataset") | |
with gr.Row(): | |
dataset_info = gr.JSON(label="Dataset Information") | |
with gr.Row(): | |
eval_splitting_strategy = gr.Radio( | |
["recursive", "fixed", "token"], | |
label="Text Splitting Strategy", | |
value="recursive" | |
) | |
eval_chunk_size = gr.Radio( | |
["small", "medium"], | |
label="Chunk Size", | |
value="medium" | |
) | |
with gr.Row(): | |
evaluate_btn = gr.Button("Run Evaluation") | |
evaluation_results = gr.DataFrame(label="Evaluation Results") | |
# Event handlers | |
db_btn.click( | |
initialize_database, | |
inputs=[document, splitting_strategy, chunk_size, db_choice], | |
outputs=[vector_db, db_progress] | |
) | |
init_llm_btn.click( | |
initialize_llmchain, | |
inputs=[llm_choice, temperature, max_tokens, top_k, vector_db], | |
outputs=[qa_chain, llm_progress] | |
) | |
msg.submit( | |
conversation, | |
inputs=[qa_chain, msg, chatbot], | |
outputs=[qa_chain, msg, chatbot, source1, page1, source2, page2, source3, page3] | |
) | |
submit_btn.click( | |
conversation, | |
inputs=[qa_chain, msg, chatbot], | |
outputs=[qa_chain, msg, chatbot, source1, page1, source2, page2, source3, page3] | |
) | |
def load_dataset_handler(dataset_name): | |
samples = evaluator.load_dataset(dataset_name) | |
return { | |
"dataset": dataset_name, | |
"num_samples": len(samples), | |
"sample_questions": [s["question"] for s in samples[:3]] | |
} | |
def run_evaluation(dataset_choice, splitting_strategy, chunk_size, vector_db, qa_chain): | |
if not evaluator.current_dataset: | |
return pd.DataFrame() | |
results = evaluator.evaluate_configuration( | |
vector_db=vector_db, | |
qa_chain=qa_chain, | |
splitting_strategy=splitting_strategy, | |
chunk_size=chunk_size | |
) | |
return pd.DataFrame([results]) | |
load_dataset_btn.click( | |
load_dataset_handler, | |
inputs=[dataset_choice], | |
outputs=[dataset_info] | |
) | |
evaluate_btn.click( | |
run_evaluation, | |
inputs=[ | |
dataset_choice, | |
eval_splitting_strategy, | |
eval_chunk_size, | |
vector_db, | |
qa_chain | |
], | |
outputs=[evaluation_results] | |
) | |
# Clear button handlers | |
clear_btn.click( | |
lambda: [None, "", 0, "", 0, "", 0], | |
outputs=[chatbot, source1, page1, source2, page2, source3, page3] | |
) | |
# Launch the demo | |
demo.queue().launch(debug=True) | |
if __name__ == "__main__": | |
demo() |