Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
import torch | |
from transformers import AutoTokenizer, AutoModel | |
from fpdf import FPDF | |
from gtts import gTTS | |
from pdfminer.high_level import extract_text | |
from docx import Document | |
from reportlab.lib.pagesizes import letter | |
from reportlab.pdfgen import canvas | |
import spacy | |
# Load spaCy English model | |
nlp = spacy.load("en_core_web_sm") | |
# Load the LegalBERT model and tokenizer | |
tokenizer = AutoTokenizer.from_pretrained("nlpaueb/legal-bert-base-uncased") | |
model = AutoModel.from_pretrained("nlpaueb/legal-bert-base-uncased") | |
# Convert DOCX to PDF using ReportLab | |
def docx_to_pdf(docx_file, output_pdf="converted_doc.pdf"): | |
doc = Document(docx_file) | |
full_text = [para.text for para in doc.paragraphs] | |
pdf = canvas.Canvas(output_pdf, pagesize=letter) | |
pdf.setFont("Helvetica", 12) | |
text_object = pdf.beginText(40, 750) | |
for line in full_text: | |
text_object.textLine(line) | |
pdf.drawText(text_object) | |
pdf.save() | |
return output_pdf | |
# Extractive summarization using LegalBERT and spaCy | |
def extractive_summarization(text, num_sentences=5): | |
# Tokenize text into sentences using spaCy | |
doc = nlp(text) | |
sentences = [sent.text.strip() for sent in doc.sents if sent.text.strip()] | |
# Handle case where document has fewer sentences than requested | |
num_sentences = min(num_sentences, len(sentences)) | |
# Encode sentences | |
inputs = tokenizer(sentences, return_tensors='pt', padding=True, truncation=True) | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
# Get sentence embeddings by averaging token embeddings | |
embeddings = outputs.last_hidden_state.mean(dim=1) | |
# Compute similarity of each sentence to the document embedding | |
document_embedding = embeddings.mean(dim=0, keepdim=True) | |
similarities = torch.nn.functional.cosine_similarity(embeddings, document_embedding) | |
# Select top sentences based on similarity scores | |
top_k = torch.topk(similarities, k=num_sentences) | |
selected_indices = top_k.indices.sort().values # Sort indices to maintain original order | |
summary_sentences = [sentences[idx] for idx in selected_indices] | |
# Combine sentences into summary | |
summary = ' '.join(summary_sentences) | |
return summary | |
# Process input file (PDF or DOCX) | |
def pdf_to_text(text, PDF, num_sentences=5): | |
try: | |
if PDF is not None: | |
file_extension = os.path.splitext(PDF.name)[1].lower() | |
if file_extension == '.docx': | |
pdf_file_path = docx_to_pdf(PDF.name) | |
text = extract_text(pdf_file_path) | |
elif file_extension == '.pdf': | |
text = extract_text(PDF.name) | |
else: | |
return None, "Unsupported file type", None | |
elif text != "": | |
pass # Use the text input provided by the user | |
else: | |
return None, "Please provide input text or upload a file.", None | |
summary = extractive_summarization(text, num_sentences) | |
# Generate a PDF of the summary | |
pdf = FPDF() | |
pdf.add_page() | |
pdf.set_font("Times", size=12) | |
pdf.multi_cell(190, 10, txt=summary, align='L') | |
pdf_output_path = "legal_summary.pdf" | |
pdf.output(pdf_output_path) | |
# Generate an audio file of the summary | |
audio_output_path = "legal_summary.wav" | |
tts = gTTS(text=summary, lang='en', slow=False) | |
tts.save(audio_output_path) | |
return audio_output_path, summary, pdf_output_path | |
except Exception as e: | |
return None, f"An error occurred: {str(e)}", None | |
# Preloaded document handler | |
def process_sample_document(num_sentences=5): | |
sample_document_path = "Marbury v. Madison.pdf" | |
with open(sample_document_path, "rb") as f: | |
return pdf_to_text("", f, num_sentences) | |
# Gradio interface | |
with gr.Blocks() as iface: | |
with gr.Row(): | |
process_sample_button = gr.Button("Summarize Marbury v. Madison Case (Pre-Uploaded)") | |
text_input = gr.Textbox(label="Input Text") | |
file_input = gr.File(label="Upload PDF or DOCX") | |
slider = gr.Slider(minimum=1, maximum=20, step=1, value=5, label="Number of Summary Sentences") | |
audio_output = gr.Audio(label="Generated Audio") | |
summary_output = gr.Textbox(label="Generated Summary") | |
pdf_output = gr.File(label="Summary PDF") | |
# Update the function calls to match new parameters | |
process_sample_button.click( | |
fn=process_sample_document, | |
inputs=slider, | |
outputs=[audio_output, summary_output, pdf_output] | |
) | |
# Use submit event for the text input and file input | |
def on_submit(text, file, num_sentences): | |
return pdf_to_text(text, file, num_sentences) | |
text_input.submit( | |
fn=on_submit, | |
inputs=[text_input, file_input, slider], | |
outputs=[audio_output, summary_output, pdf_output] | |
) | |
file_input.change( | |
fn=on_submit, | |
inputs=[text_input, file_input, slider], | |
outputs=[audio_output, summary_output, pdf_output] | |
) | |
if __name__ == "__main__": | |
iface.launch() | |